Recombinant cellulase of Caulobacter crescentus: potential applications for biofuels and textile industries

Abstract

Caulobacter crescentus (C. crescentus) has a single celA gene encoding the bacterial cellulase (EC 3.2.1.4) of the GH9 family that is induced at transcriptional levels (q-PCR) by agroindustrial residues. Corn straw (1%, w/v) was more efficient in inducing bacterial mRNA-celA expression than corn cob (1%, w/v) and a parallel protein expression profile was observed, since enzyme activity was also higher in presence of corn straw in the bacterium. In order to evaluate the biotechnological role of cellulase from C. crescentus (NA1000), the celA gene of 1,878 bp (CCNA_02310) was cloned in the pTrCHisA vector and successfully expressed in Escherichia coli. The recombinant cellulase CelA purified showed 73 kDa, specificity to CMC, optimal pH of 5.5 and pH stability of 6, optimal temperature at 40 °C and thermostability at 35 °C, KM = 0.66 mg/mL and VMax = 2.41 U/mg/min. CelA was strongly activated by ions Mn2+ (70%), Sn2+ (49%) and Co2+ (46%) and was efficient in the hydrolysis of corn straw and corn cob (1%; w/v) releasing 2.62 µmol/mL and 1.02 µmol/mL of reducing sugar, respectively, being an alternative for the production of chemicals and biofuels. CelA was applied directly to the jeans fiber and scanning electron micrographs (SEM) generated showed a clean and smooth surface of the fibers compared to the control, indicating the application of enzyme for the biopolishing of denim jeans. This work supports a set of biotechnological capabilities of cellulase from C. crescentus suggested by the bacterial genomic sequence that has not been described yet.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ali H, Hashem M, Shaker N et al (2012) Cellulase enzyme in bio-finishing of cotton-based fabrics: effects of process parameters. Res J Text Appar 16:57–65. https://doi.org/10.1108/RJTA-16-03-2012-B006

    Article  Google Scholar 

  2. Aly A, Moustafa A, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12:697–705. https://doi.org/10.1016/S0959-6526(03)00074-X

    Article  Google Scholar 

  3. Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96:48–56. https://doi.org/10.1002/bit.21175

    CAS  Article  PubMed  Google Scholar 

  4. Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T (2013) Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym 94:409–415. https://doi.org/10.1016/j.carbpol.2013.01.066

    CAS  Article  PubMed  Google Scholar 

  5. Battan B, Dhiman SS, Ahlawat S et al (2012) Application of thermostable xylanase of bacillus pumilus in textile processing. Indian J Microbiol 52:222–229. https://doi.org/10.1007/s12088-011-0118-1

    CAS  Article  PubMed  Google Scholar 

  6. Belghith H, Ellouz-Chaabouni S, Gargouri A (2001) Biostoning of denims by Penicillium occitanis (Pol6) cellulases. J Biotechnol 89:257–262. https://doi.org/10.1016/S0168-1656(01)00309-1

    CAS  Article  PubMed  Google Scholar 

  7. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383. https://doi.org/10.1016/S0734-9750(00)00041-0

    CAS  Article  PubMed  Google Scholar 

  8. Bosetto A, Justo PI, Zanardi B et al (2016) Research progress concerning fungal and bacterial β-xylosidases. Appl Biochem Biotechnol 178:766–795. https://doi.org/10.1007/s12010-015-1908-4

    CAS  Article  PubMed  Google Scholar 

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  10. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    CAS  Article  PubMed  Google Scholar 

  11. Cai Z-W, Ge H-H, Yi Z-W et al (2018) Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int J Biol Macromol 118:2176–2184. https://doi.org/10.1016/j.ijbiomac.2018.07.090

    CAS  Article  PubMed  Google Scholar 

  12. Chen W, Kuo T (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucl Acids Res 21:2260–2260. https://doi.org/10.1093/nar/21.9.2260

    CAS  Article  PubMed  Google Scholar 

  13. Cheng R, Chen J, Yu X et al (2013) Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnol 13:105. https://doi.org/10.1186/1472-6750-13-105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chuan Wei KS, Teoh TC, Koshy P et al (2015) Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electron J Biotechnol 18:103–109. https://doi.org/10.1016/j.ejbt.2014.12.007

    Article  Google Scholar 

  15. Corrêa JM, Graciano L, Abrahão J et al (2012) Expression and characterization of a GH39 β-xylosidase II from caulobacter crescentus. Appl Biochem Biotechnol 168:2218–2229. https://doi.org/10.1007/s12010-012-9931-1

    CAS  Article  PubMed  Google Scholar 

  16. Corrêa JM, Mingori MR, Gandra RF et al (2014) Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus. Appl Biochem Biotechnol 172:1085–1097. https://doi.org/10.1007/s12010-013-0549-8

    CAS  Article  PubMed  Google Scholar 

  17. Corrêa JM, Santos EL, Simões MR et al (2019) Optimization of C. crescentus β-xylosidases and expression of xynB1–5 genes in response to agro-industrial waste. Waste Biomass Valorization 1:1–15. https://doi.org/10.1007/s12649-019-00881-w

    CAS  Article  Google Scholar 

  18. Csiszár E, Urbánszki K, Szakács G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072. https://doi.org/10.1016/S1381-1177(00)00149-1

    Article  Google Scholar 

  19. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126. https://doi.org/10.1016/j.mib.2015.05.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Davis BJ (1964) Disc Electrophoresis - II Method and application to human serum proteins. Ann N Y Acad Sci 122:404–427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x

    Article  Google Scholar 

  21. Domań-Pytka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol 30:107–121. https://doi.org/10.1080/10408410490435115

    CAS  Article  PubMed  Google Scholar 

  22. Eckert K, Ernst HA, Schneider E et al (2003) Crystallization and preliminary X-ray analysis of Alicyclobacillus acidocaldarius endoglucanase CelA. Acta Crystallogr Sect D Biol Crystallogr 59:139–141. https://doi.org/10.1107/S0907444902018280

    CAS  Article  Google Scholar 

  23. Eckert K, Zielinski F, Lo LL, Schneider E (2002) Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbiol Biotechnol 60:428–436. https://doi.org/10.1007/s00253-002-1131-4

    CAS  Article  PubMed  Google Scholar 

  24. El-Zawahry MM, Helmy HM, Abou-Okeil A (2009) Enzymatic treatment and its influence on finishing and dyeing properties of jute fabrics. Res J Text Appar 13:34–44. https://doi.org/10.1108/RJTA-13-04-2009-B005

    CAS  Article  Google Scholar 

  25. Ely B (1991) Genetics of caulobacter crescentus. In: Methods enzymol. pp 372–384

  26. Esfandiari A, Firouzi-Pouyaei E, Aghaei-Meibodi P (2014) Effect of enzymatic and mechanical treatment on combined desizing and bio-polishing of cotton fabrics. J Text Inst 105:1193–1202. https://doi.org/10.1080/00405000.2014.880222

    CAS  Article  Google Scholar 

  27. Estela R, Luis J (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: sustainable degradation of lignocellulosic biomass: techniques, applications and commercialization. InTech, pp 119–155

  28. Evinger M, Agabian N (1977) Envelope-associated nucleoid from caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301

    CAS  Article  Google Scholar 

  29. Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19. https://doi.org/10.1186/s12896-015-0129-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    CAS  Article  Google Scholar 

  31. Gomes D, Rodrigues AC, Domingues L, Gama M (2015) Cellulase recycling in biorefineries—Is it possible? Appl Microbiol Biotechnol 99:4131–4143. https://doi.org/10.1007/s00253-015-6535-z

    CAS  Article  PubMed  Google Scholar 

  32. Graciano L, Corrêa JM, Gandra RF et al (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-Xylosidase I. World J Microbiol Biotechnol 28:2879–2888. https://doi.org/10.1007/s11274-012-1099-x

    CAS  Article  PubMed  Google Scholar 

  33. Graciano L, Corrêa JM, Vieira FGN et al (2015) Cloning and expression of the xynA1 gene encoding a xylanase of the GH10 group in Caulobacter crescentus. Appl Biochem Biotechnol 175:3915–3929. https://doi.org/10.1007/s12010-015-1560-z

    CAS  Article  PubMed  Google Scholar 

  34. Heinen PR, Henn C, Peralta RM et al (2014) Xylanase from Fusarium heterosporum: Properties and influence of thiol compounds on xylanase activity. Afr J Biotechnol 13:1047–1055. https://doi.org/10.5897/AJB2013.13282

    Article  Google Scholar 

  35. Hildén L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1693. https://doi.org/10.1007/s10529-004-4579-8

    CAS  Article  PubMed  Google Scholar 

  36. Huang Y, Krauss G, Cottaz S et al (2005) A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588. https://doi.org/10.1042/BJ20041388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Jabasingh SA, Nachiyar CV (2012) Process optimization for the biopolishing of jute fiberswith cellulases from Aspergillus Nidulans AJ SU04. Int J Biosci Biochem Bioinforma 2:12–16. https://doi.org/10.7763/IJBBB.2012.V2.60

    Article  Google Scholar 

  38. Jacomini D, Bussler L, Corrêa JM et al (2020) Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05507-2

    Article  PubMed  Google Scholar 

  39. Justo PI, Corrêa JM, Maller A et al (2015) Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-xylosidase-α-arabinosidase member in Caulobacter crescentus. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 108:993–1007. https://doi.org/10.1007/s10482-015-0552-x

    CAS  Article  Google Scholar 

  40. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    CAS  Article  Google Scholar 

  41. Kataeva IA, Uversky VN, Brewer JM et al (2004) Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 17:759–769. https://doi.org/10.1093/protein/gzh094

    CAS  Article  PubMed  Google Scholar 

  42. Kaur J, Chadha B, Kumar B, Saini H (2007) Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresour Technol 98:74–81. https://doi.org/10.1016/j.biortech.2005.11.019

    CAS  Article  PubMed  Google Scholar 

  43. Kazeem MO, Shah UKM, Baharuddin AS, AbdulRahman NA (2017) Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic B. licheniformis 2D55. Appl Biochem Biotechnol 182:1318–1340. https://doi.org/10.1007/s12010-017-2401-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Kim B-K, Lee B-H, Lee Y-J et al (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 44:411–416. https://doi.org/10.1016/j.enzmictec.2009.02.005

    CAS  Article  Google Scholar 

  45. Koo H, Ueda M, Wakida T et al (1994) Cellulase treatment of cotton fabrics. Text Res J 64:70–74. https://doi.org/10.1177/004051759406400202

    CAS  Article  Google Scholar 

  46. Koukiekolo R, Cho H-Y, Kosugi A et al (2005) Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol 71:3504–3511. https://doi.org/10.1128/AEM.71.7.3504-3511.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kozlowski LP (2016) IPC: isoelectric point calculator. Biol Direct 11:1–16. https://doi.org/10.1186/s13062-016-0159-9

    CAS  Article  Google Scholar 

  48. Kumaran MDB, Kalaichelv PT, Santhi R (2015) Exploitation of agro-industrial wastes as substrates for cellulase production by Bacillus licheniformis MTCC 429. Microbiol J 5:36–42. https://doi.org/10.3923/mj.2015.36.42

    Article  Google Scholar 

  49. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    CAS  Article  Google Scholar 

  50. Lee H-S, Kim M-S, Cho H-S et al (2002) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277:21891–21897. https://doi.org/10.1074/jbc.M201623200

    CAS  Article  PubMed  Google Scholar 

  51. Li Y-H, Ding M, Wang J et al (2006) A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp.AC-1. Appl Microbiol Biotechnol 70:430–436. https://doi.org/10.1007/s00253-005-0075-x

    CAS  Article  PubMed  Google Scholar 

  52. Lima AOS, Quecine MC, Fungaro MHP et al (2005) Molecular characterization of a β-1,4-endoglucanase from an endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68:57–65. https://doi.org/10.1007/s00253-004-1740-1

    CAS  Article  PubMed  Google Scholar 

  53. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    CAS  Article  Google Scholar 

  54. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. https://doi.org/10.1021/ja01318a036

    CAS  Article  Google Scholar 

  55. Liu H, Pereira JH, Adams PD et al (2010) Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A. FEBS Lett 584:3431–3435. https://doi.org/10.1016/j.febslet.2010.06.041

    CAS  Article  PubMed  Google Scholar 

  56. Liu J, Xia W (2006) Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem Eng J 30:82–87. https://doi.org/10.1016/j.bej.2006.02.005

    CAS  Article  Google Scholar 

  57. Marks ME, Castro-Rojas CM, Teiling C et al (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 192:3678–3688. https://doi.org/10.1128/JB.00255-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    CAS  Article  Google Scholar 

  59. Mojsov K (2014a) Biopolishing enzymes and their applications in textiles: a review. Tekst Ind 61:20–24

    Google Scholar 

  60. Mojsov K (2014b) Trends in bio-processing of textiles: a review. Savrem Tehnol 3:135–138. https://doi.org/10.5937/savteh1402135M

    Article  Google Scholar 

  61. Montazer M, Sadeghian Maryan A (2010) Influences of different enzymatic treatment on denim garment. Appl Biochem Biotechnol 160:2114–2128. https://doi.org/10.1007/s12010-009-8727-4

    CAS  Article  PubMed  Google Scholar 

  62. NCBI (2020) National center for biotechnology information. http://www.ncbi.nlm.nih.gov/blast/. Accessed 12 Oct 2018

  63. Ng I-S, Li C-W, Yeh Y-F et al (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435. https://doi.org/10.1007/s00792-009-0228-4

    CAS  Article  PubMed  Google Scholar 

  64. Ng TK, Zeikus JG (1981) Purification and characterization of an endoglucanase (1,4-β-D-glucan glucanohydrolase) from Clostridium thermocellum. Biochem J 199:341–350. https://doi.org/10.1042/bj1990341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Nierman WC, Feldblyum TV, Laub MT et al (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci 98:4136–4141. https://doi.org/10.1073/pnas.061029298

    CAS  Article  PubMed  Google Scholar 

  66. Orji FA, Fashola F, Lawal AK, Dike E (2017) Identification of co-factor behaviour of manganese ion on cellulase from atoxigenic Aspergillus Flavus M15 Strain. Niger J Microbiol 30:3580–3586

    Google Scholar 

  67. Oslancová A, Janeček Š (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59:1945–1959. https://doi.org/10.1007/PL00012517

    Article  PubMed  Google Scholar 

  68. Pandey S, Kushwah J, Tiwari R et al (2014) Cloning and expression of β-1, 4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbiol Res 169:693–698. https://doi.org/10.1016/j.micres.2014.02.006

    CAS  Article  PubMed  Google Scholar 

  69. Park K-H, Kim T-J, Cheong T-K et al (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim Biophys Acta Protein Struct Mol Enzymol 1478:165–185. https://doi.org/10.1016/S0167-4838(00)00041-8

    CAS  Article  Google Scholar 

  70. Pazhang M, Younesi FS, Mehrnejad F et al (2018) Ig-like domain in endoglucanase Cel9A from Alicyclobacillus acidocaldarius makes dependent the enzyme stability on calcium. Mol Biotechnol 60:698–711. https://doi.org/10.1007/s12033-018-0105-4

    CAS  Article  PubMed  Google Scholar 

  71. Phitsuwan P, Laohakunjit N, Kerdchoechuen O et al (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol (Praha) 58:163–176. https://doi.org/10.1007/s12223-012-0184-8

    CAS  Article  Google Scholar 

  72. Poindexter JS (1981) The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179

    CAS  Article  Google Scholar 

  73. Poindexter JS (1964) Biological properties and a classification of the Caulobacter crescentus group. Bacteriol Rev 28:231–295

    CAS  Article  Google Scholar 

  74. Potprommanee L, Wang X-Q, Han Y-J et al (2017) Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 12:e0175004. https://doi.org/10.1371/journal.pone.0175004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. R Development Core Team (2020) R: a language and environment for statistical computing

  76. Ravachol J, Borne R, Tardif C et al (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289:7335–7348. https://doi.org/10.1074/jbc.M113.545046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876. https://doi.org/10.1016/j.procbio.2003.09.013

    CAS  Article  Google Scholar 

  78. Sahin S, Ozmen I, Biyik H (2016) Industrial applications of endoglucanase obtained from novel and native Trichoderma atroviride. Chem Biochem Eng Q 30:265–278. https://doi.org/10.15255/CABEQ.2014.2130

    CAS  Article  Google Scholar 

  79. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor press, New York

    Google Scholar 

  80. Saravanan D, Lakshmi SN, Raja K, Vasanthi NS (2013) Biopolishing of cotton fabric with fungal cellulase and its effect on the morphology of cotton fibres. Indian J Fibre Text Res 38:156–160

    CAS  Google Scholar 

  81. Scapin SMN, Souza FHM, Zanphorlin LM et al (2017) Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PLoS ONE 12:e0176550. https://doi.org/10.1371/journal.pone.0176550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Silva AA, Corrêa JM, Maller A et al (2020) Caulobacter crescentus β-Xylosidase II is highly tolerant to inhibitors present in fermentative processes involving lignocellulosic biomass. Bioenergy Res 13:301–313. https://doi.org/10.1007/s12155-020-10112-z

    CAS  Article  Google Scholar 

  83. Simic K, Soljacic I, Pusic T (2015) Application of Cellulases in the process of finishing: uparoba celulaz v procesu plemenitenja. Tekstilec 58:47–56. https://doi.org/10.14502/Tekstilec2015.58.47−56

    Article  Google Scholar 

  84. Singh J, Batra N, Sobti RC (2004) Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J Ind Microbiol Biotechnol 31:51–56. https://doi.org/10.1007/s10295-004-0114-0

    CAS  Article  PubMed  Google Scholar 

  85. Smith SP, Bayer EA, Czjzek M (2017) Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 44:151–160. https://doi.org/10.1016/j.sbi.2017.03.009

    CAS  Article  PubMed  Google Scholar 

  86. Song N, Cai H-Y, Yan Z-S, Jiang H-L (2013) Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresour Technol 131:281–287. https://doi.org/10.1016/j.biortech.2013.01.003

    CAS  Article  PubMed  Google Scholar 

  87. Sriariyanun M, Tantayotai P, Yasurin P et al (2016) Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil. Electron J Biotechnol 19:23–28. https://doi.org/10.1016/j.ejbt.2015.11.002

    Article  Google Scholar 

  88. Teng C, Yan Q, Jiang Z et al (2010a) Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour Technol 101:7679–7682. https://doi.org/10.1016/j.biortech.2010.05.004

    CAS  Article  PubMed  Google Scholar 

  89. Teng Y, Yin Q, Ding M, Zhao F (2010b) Purification and characterization of a novel endo- -1,4-glucanase, AfEG22, from the giant snail, Achatina fulica frussac. Acta Biochim Biophys Sin (Shanghai) 42:729–734. https://doi.org/10.1093/abbs/gmq083

    CAS  Article  Google Scholar 

  90. Uddin MG (2015) Effects of biopolishing on the quality of cotton fabrics using acid and neutral cellulases. Text Cloth Sustain 1:9. https://doi.org/10.1186/s40689-015-0009-7

    Article  Google Scholar 

  91. Vijayaraghavan P, Vincent SGP (2012) Purification and Characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Polish J Microbiol 61:51–55

    CAS  Article  Google Scholar 

  92. Wang L, Yang M, Fan X et al (2011) An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem 46:1619–1626. https://doi.org/10.1016/j.procbio.2011.05.004

    CAS  Article  Google Scholar 

  93. Yin L-J, Lin H-H, Xiao Z-R (2010) Purification and Characterization of a cellulase from Bacillus subtilis YJ1. J Mar Sci Technol 18:466–471

    Google Scholar 

  94. Younesi FS, Pazhang M, Najavand S et al (2016) Deleting the Ig-like domain of Alicyclobacillus acidocaldarius endoglucanase Cel9A causes a simultaneous increase in the activity and stability. Mol Biotechnol 58:12–21. https://doi.org/10.1007/s12033-015-9900-3

    CAS  Article  PubMed  Google Scholar 

  95. Zafar M, Ahmed S, Khan MIM, Jamil A (2014) Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli. Mol Biol Rep 41:3295–3302. https://doi.org/10.1007/s11033-014-3192-8

    CAS  Article  PubMed  Google Scholar 

  96. Zhang F, Chen J-J, Ren W-Z et al (2011) Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462T. Bioresour Technol 102:10143–10146. https://doi.org/10.1016/j.biortech.2011.08.019

    CAS  Article  PubMed  Google Scholar 

  97. Zhou J, Wang Y-H, Chu J et al (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100:819–825. https://doi.org/10.1016/j.biortech.2008.06.068

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

L. Bussler and D. Jacomini were fellow at CAPES (Coordination of Improvement of Higher Education Personnel). Juliana was a PNPD fellow at CAPES of the Postgraduate Program in Pharmaceutical Sciences. This project was funded by CAPES (PROAP 2015-2019).

Author information

Affiliations

Authors

Contributions

LB: investigation, validation, formal analysis, writing (original draft); DJ: investigation, validation, formal analysis; JMC: investigation, validation, formal analysis; MKK: funding acquisition; AM: conceptualization; RCGS: development and design of methodology; supervision, projet administration, writing (review and editing).

Corresponding author

Correspondence to Rita de Cássia Garcia Simão.

Ethics declarations

Conflict of interest

The authors declare that the research was performed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bussler, L., Jacomini, D., Corrêa, J.M. et al. Recombinant cellulase of Caulobacter crescentus: potential applications for biofuels and textile industries. Cellulose (2021). https://doi.org/10.1007/s10570-021-03700-5

Download citation

Keywords

  • Cloning
  • Expression
  • Purification
  • Biopolishing
  • Hydrolysis