Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with ε-poly-L-lysine and their antibacterial activity

Abstract

A series of dialdehyde microcrystalline cellulose (DAMC) particles crosslinked with EPL (EPL-DAMCs) was successfully prepared by reacting DAMC with varying amounts of ε-Poly-L-lysine (EPL). Based on the excellent antibacterial property of ε-poly-L-lysine (EPL), the obtained EPL-DAMCs have a broad-spectrum antibacterial activity, and their physicochemical and antibacterial activities were also investigated. Fourier -transform infrared spectroscopy results demonstrated the formation of Schiff base between the aldehyde groups in DAMC and amino groups of EPL. The DAMC particles showed an aggregated structure of fibres. Among all DAMC crosslinked with EPL (EPL-DAMCs), the EPL-DAMC-4, with a lysine content of 0.46 ± 0.08 mg/g, showed the highest antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhimurium, with the minimum inhibitory concentration (MIC) of 3.75, 15.0, 7.5 and 3.75 mg/mL, respectively. Compared with DAMC, the EPL-DAMC-4 exhibited the better inhibition effect and antimicrobial stability on the tested strains. These findings suggested that EPL-DAMCs might be used as antimicrobial biomaterial and have great potential in food packaging field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akhtar M, Dickinson E (2007) Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum Arabic. Food Hydrocoll 21(4):607–616

    CAS  Article  Google Scholar 

  2. Bansal M, Chauhan GS, Kaushik A, Sharma A (2016) Extraction and functionalization of bagasse cellulose nanofibres to schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Chen Y, Wang AJ, Yuan PX, Luo X, Xue Y, Feng JJ (2019) Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 132:294–301

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose-Survey of the most recent achievements. Carbohydr Polym 93:207–215

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Fürsatz M, Skog M, Sivlér P, Palm E, Aronsson C, Skallberg A, Greczynski G, Khalaf H, Bengtsson T, Aili D (2018) Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed Mater 13:2–11

    Article  Google Scholar 

  6. Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibac-terial properties to bacterial cellulose nanofibers via immobilizing ε-polylysine nanocoatings. Food Hydrocoll 36:204–211

    CAS  Article  Google Scholar 

  7. Ge HH, Zhang LM, Xu M, Cao J, Kang CC (2018) Preparation of dialdehyde cellulose and its antibacterial activity. Adv Appl Biotechnol 444:545–553

    Article  Google Scholar 

  8. Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J (2018) A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharmacother 107:96–108

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Hassan M, Javadzadeh Y, Lotfipour F, Badomchi R (2011) Determination of comparative minimum inhibitory concentration (MIC) of bacteriocins produced by enterococci for selected isolates of multi-antibiotic resistant enterococcus spp. Adv Pharm Bull 1(2):75–79

    PubMed  PubMed Central  Google Scholar 

  10. Hou Q, Liu W, Liu Z, Duan B, Bai L (2008) Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydr Polym 74:235–240

    CAS  Article  Google Scholar 

  11. Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246

    CAS  Article  Google Scholar 

  12. Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19(4):1075–1083

    CAS  Article  Google Scholar 

  13. Jiang XL, Yang Z, Peng YF, Han BQ, Li ZY, Li XH, Liu WS (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohydr Polym 137:632–641

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Kang L, Li J, Zeng J, Gao W, Xu J, Cheng Z, Chen K, Wang B (2019) A water solvent-assisted condensation polymerization strategy of superhydrophobic lignocellulosic fibers for efficient oil/water separation. J Mater Chem 7:16447–16457

    CAS  Article  Google Scholar 

  15. Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen usingdialdehyde cellulose. Process Biochem 44:869–874

    CAS  Article  Google Scholar 

  16. Kedzior SA, Zoppe JO, Berry RM, Cranston ED (2018) Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr Opin Solid State Mater Sci 12:2–6. https://doi.org/10.1016/j.cossms.2018.11.005

    CAS  Article  Google Scholar 

  17. Keshk SMAS, Ramadan AM, Bondock S (2015) Physicochemical characterization of novel schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydr Polym 127:246–251

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369(1):79–85

    CAS  Article  Google Scholar 

  19. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation ofcrystalline cellulose. Biomacromol 1:488–492

    CAS  Article  Google Scholar 

  20. Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017) Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr Polym 163:34–42

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Laura BD, Jesús MG, Eduardo PL, David RR, José LR, José CG, María CRS, Pablo MR (2019) Antifungal agents based on chitosan oligomers, ε-polylysine and streptomyces spp secondary metabolites against three botryosphaeriaceae species. Antibiotics 8(99):1–13. https://doi.org/10.3390/antibiotics8030099

    CAS  Article  Google Scholar 

  22. Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in peri-odate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886

    CAS  Article  Google Scholar 

  23. Li YQ, Han Q, Feng JL, Tian WL, Mo HZ (2014) Antibacterial characteristics and mechanisms of ε-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control 43:22–27

    CAS  Article  Google Scholar 

  24. Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2019) Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7(1):1146–1158

    CAS  Article  Google Scholar 

  25. Liang C, Yuan F, Liu F, Wang Y, Gao Y (2014) Structure and antimicrobial mechanism of ɛ-polylysine-chitosan conjugates through maillard reaction. Int J Biol Macromol 70:427–434

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehydenanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    CAS  Article  Google Scholar 

  27. Luo CY, Zeng ZL, Gong DM, Zhao CY, Liang QF, Zeng C (2014) Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control 46:488–494

    CAS  Article  Google Scholar 

  28. Maekawa E, Koshijima T (1990) Preparation and characterisation of hydroxamic acid derivatives and its metal complexes derived from cellulose. J Appl Polym Sci 40:1601–1613

    CAS  Article  Google Scholar 

  29. Marcó A, Rubio R, Companó R, Casals I (2002) Comparison of the kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 57(5):1019–1026

    PubMed  Article  PubMed Central  Google Scholar 

  30. Miller AF, Donald AM (2003) Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromol 4(3):510–517

    CAS  Article  Google Scholar 

  31. Mishra D, Jyotshna SA, Chanda D, Shanker K, Khar P (2019) Potential of dialdehyde cellulose for sustained release of oxytetracycline: a pharmacokinetic study. Int J Biol Macromol 136:97–105

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. MohamedMohamed AAL, Hassabo AG, Shaarawy S, Hebeish A (2017) Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohydr Polym 178:251–259

    Article  CAS  Google Scholar 

  33. Mou KW, Li JJ, Wang YY, Cha RT, Jiang XY (2017) 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Nada AMA, Hassan ML (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stab 67(1):111–115

    CAS  Article  Google Scholar 

  35. Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981

    CAS  Article  Google Scholar 

  36. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. Perry ID, Nguyen T, Sherinad V, Love TM, Miller RK, Krishnanb L, Shawn PM (2019) Analysis of the capacity of salmonella enterica typhimurium to infect the human Placenta. Placenta 83:43–52

    PubMed  Article  Google Scholar 

  38. Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50(12):2105–2111

    CAS  Article  Google Scholar 

  39. Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124–133

    Article  Google Scholar 

  40. Rol F, Belgacem MN, Gandini A, Bras J (2018) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    Article  CAS  Google Scholar 

  41. Salama HE, Saad GR, Sabaa MW (2015) Synthesis, characterization and biological activity of schiff bases based on chitosan and arylpyrazole moiety. Int J Biol Macromol 79:996–1003

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39(5):639–644

    CAS  Article  Google Scholar 

  43. Seyyed AN, Nahid H, Jorge ARN (2020) Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int J Biol Macromol 154:1215–1226

    Article  CAS  Google Scholar 

  44. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–a review. Biotechnol Rep 3(21):1–5. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  45. Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97(9):1148–1159

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Sirviö J, Hyvakko U, Liimatainen H, Niinimäki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83(3):1293–1297

    Article  CAS  Google Scholar 

  47. Song L, Sang Y, Cai L, Shi YC, Farrah SR, Baney RH (2010) The effect of cooking on the antibacterial activity of the dialdehyde starch suspensions. Starch Starke 62(9):458–466

    CAS  Article  Google Scholar 

  48. Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    CAS  Article  Google Scholar 

  49. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    CAS  Article  PubMed  Google Scholar 

  50. Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr Polym 208:314–322

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Veelaert S, de Wit D, Gotlied KF, Verhe R (1997) Chemical and physicaltransitions of periodate oxidized potato starch in water. Carbohydr Polym 33:153–162

    CAS  Article  Google Scholar 

  52. Wu R, He B, Zhao G, Qian L, Li X (2013) Immobilization of pectinase on oxidized pulp fiber and its application in whitewater treatment. Carbohydr Polym 97:523–529

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Wu H, Teng C, Liu B, Tian HF, Wang JG (2018) Characterization and long term antimicrobial activity of the nisin anchored cellulose films. Int J Biol Macromol 113:487–493

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Wu C, Sun J, Lu Y, Wu T, Pang J, Hu Y (2019a) In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int J Biol Macromol 132:385–392

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Wu Y, Li Q, Zhang X, Li Y, Li B, Liu S (2019b) Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int J Biol Macromol 128:673–680

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Xu QH, Jin LQ, Wang YL, Chen H, Qin MH (2019a) Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper. Cellulose 26:1309–1321

    CAS  Article  Google Scholar 

  57. Xu YJ, Shi Y, Lei F, Dai L (2019b) A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydr Polym 230:115671

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Yang J, Li JF (2017) Self-assembled cellulose materials for biomedicine: a review. Carbohydr Polym 181:264–274

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Zhang Y, Zhou MR (2007) Methods for data process of near infrared spectroscopy analysis. Infrared Techn 29(6):345–348. https://doi.org/10.1016/S1673-8527(07)60052-6

    Article  Google Scholar 

  62. Zhang L, Li R, Dong F, Tian A, Li Z, Dai Y (2015) Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem 166:107–114

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  63. Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24(5):2287–2298

    CAS  Article  Google Scholar 

  64. Zhang L, Zhang Q, Zheng Y, He Z, Guan P, He X, Hui L (2018a) Study of schiff base formation between dialdehyde cellulose and proteins, and its application for the deproteinization of crude polysaccharide extracts. Ind Crop Prod 112:532–540

    CAS  Article  Google Scholar 

  65. Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J (2018b) Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control 98:113–119

    Article  CAS  Google Scholar 

  66. Zhang SL, Kai CC, Liu BF, Zhang SL, Wei W, Xu XL, Zhou ZW (2019) Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose 26:5621–5633

    CAS  Article  Google Scholar 

  67. Zhao R, Wang H, Ji T, Anderson G, Nie G, Zhao Y (2015) Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent. Sci Bull 60(2):216–226

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project No. 31771952). The authors thank Professor Hongjiang Yang (College of Bioengineering, Tianjin University of Science and Technology, China) for his helpful assistance in the experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, Y., Zhang, L. et al. Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with ε-poly-L-lysine and their antibacterial activity. Cellulose (2021). https://doi.org/10.1007/s10570-021-03692-2

Download citation

Keywords

  • Antibacterial activity
  • Dialdehyde microcrystalline cellulose
  • Particle
  • ε-poly-L-lysine
  • Preparation