Comparison between cellulose nanocrystal and microfibrillated cellulose as reinforcement of poly(vinyl acetate) composites obtained by either in situ emulsion polymerization or a simple mixing technique

Abstract

Nanocellulose is abundant, renewable, biocompatible, and a good candidate as reinforcement agent in nanocomposites; however, its hydrophilicity leads to poor dispersion in hydrophobic polymers. Recently, both in situ polymerization and cellulose surface modification have been used to improve dispersion, but emulsion polymerization is rarely adopted, and when it is, the reinforcement agent is usually cellulose nanocrystal (CNC), with gain in mechanical properties being the main focus of the research. Therefore, this work aims to explore the influence of adding either CNC or microfibrillated cellulose (MFC), both without surface modification, on the mechanical resistance, thermal degradation, and water vapor permeability of poly(vinyl acetate) composites obtained by either in situ emulsion polymerization or mixing. The results showed that despite having similar impacts on thermal and barrier properties, MFC and CNC affect the mechanical properties of their composites differently. Both cause decrease of the thermal degradation rate and do not have a significant impact on water vapor permeability. However, the addition of CNC during synthesis increased composite mechanical resistance significantly while the addition of MFC did not show improvement. Mechanical resistance is also strongly dependent on the procedure used to produce the composites.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    CAS  Article  PubMed  Google Scholar 

  2. ASTM International (2016) ASTM E96/E96M-16: standard test methods for water vapor transmission of materials. West Conshohocken

  3. ASTM International (2018) ASTM D882-18: standard test method for tensile properties of thin plastic sheeting. West Conshohocken

  4. Ballner D, Herzele S, Keckes J, Edler M, Griesser T, Saake B, Liebner F, Potthast A, Paulik C, Gindl-Altmutter W (2016) Lignocellulose nanofiber-reinforced polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Appl Mater Interface 8:13520–13525. https://doi.org/10.1021/acsami.6b01992

    CAS  Article  Google Scholar 

  5. Banerjee M, Sain S, Mukhopadhyay A, Sengupta S, Kar T, Ray D (2014) Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized PMMA/cellulose composites. J Appl Polym Sci 131:39808/1–39808/9. https://doi.org/10.1002/app.39808

    CAS  Article  Google Scholar 

  6. Ben Mabrouk A, Rei Vilar M, Magnin A, Belgacem MN, Boufi S (2011) Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization. J Colloid Interface Sci 363:129–136. https://doi.org/10.1016/j.jcis.2011.07.050

    CAS  Article  PubMed  Google Scholar 

  7. Bouhoute M, Taarji N, Felipe LO, Habibi Y, Kobayashi I, Zahar M, Isoda H, Nakajima M, Neves MA (2021) Microfibrillated cellulose from Arganina spinosa shells as sustainable solid particles for O/W Pickering emulsions. Carbohydr Polym 251:116990/1–116990/10

    Article  Google Scholar 

  8. Cazón P, Velazquez G, Vázquez M (2019) Novel composite films from regenerated cellulose–glycerol–polyvinyl alcohol: mechanical and barrier properties. Food Hydrocoll 89:481–491. https://doi.org/10.1016/j.foodhyd.2018.11.012

    CAS  Article  Google Scholar 

  9. Dastjerdi Z, Cranston ED, Dubé MA (2017) Synthesis of poly(n-butyl acrylate/methyl methacrylate)/CNC latex nanocomposites via in situ emulsion polymerization. Macromol React Eng 29:1531–1546. https://doi.org/10.1002/mren.201700013

    CAS  Article  Google Scholar 

  10. Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36–42. https://doi.org/10.1016/j.ijadhadh.2017.11.009

    CAS  Article  Google Scholar 

  11. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8. https://doi.org/10.1016/j.cocis.2017.01.004

    CAS  Article  Google Scholar 

  12. Elmabrouk AB, Wim T, Dufresne A, Boufi S (2009) Preparation of poly(styrene-co‐hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci 114:2946–2955. https://doi.org/10.1002/app.30886

    CAS  Article  Google Scholar 

  13. Fujisawa S, Togawa E, Kuroda K (2017) Nanocellulose-stabilized Pickering emulsions and their applications. Sci Technol Adv Mater 18:959–971. https://doi.org/10.1080/14686996.2017.1401423

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Gan PG, Sam ST, Abdullah MFB, Omar MF (2019) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci 137:48544/1-48544/14. https://doi.org/10.1002/app.48544

    CAS  Article  Google Scholar 

  15. Geng S, Haque MdM-U, Oksman K (2016) Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): structure and mechanical properties. Compos Sci Technol 126:35–42. https://doi.org/10.1016/j.compscitech.2016.02.013

    CAS  Article  Google Scholar 

  16. Geng S, Wei J, Aitomäki Y, Noël M, Oksman K (2018) Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites. Nanoscale 10:11797–11807. https://doi.org/10.1039/C7NR09080C

    CAS  Article  PubMed  Google Scholar 

  17. George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54. https://doi.org/10.2147/NSA.S64386

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Grüneberger F, Huch A, Geiger T, Zimmermann T, Tingaut P (2016) Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres. Coll Polym Sci 294:1393–1403. https://doi.org/10.1007/s00396-016-3899-2

    CAS  Article  Google Scholar 

  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    CAS  Article  PubMed  Google Scholar 

  20. Hamou KB, Kaddami H, Dufresne A, Boufi S, Magnin A, Erchiqui F (2018) Impact of TEMPO-oxidization strength on the properties of cellulosenanofibril reinforced polyvinyl acetate nanocomposites. Carbohydr Polym 181:1061–1070. https://doi.org/10.1016/j.carbpol.2017.11.043

    CAS  Article  PubMed  Google Scholar 

  21. Hassan M, Lai TK, Gopakumar DA, Jawaid M, Owolabi FAT, Mistar EM, Alfatah T, Noriman NZ, Haafiz MKM, Abdul Khalil HPS (2019) Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27:1602–1612. https://doi.org/10.1007/s10924-019-01457-4

    CAS  Article  Google Scholar 

  22. Hoepfner JC, Loos MR, Pezzin SH (2018) Evaluation of thermomechanical properties of polyvinyl butyral nanocomposites reinforced with graphene nanoplatelets synthesized by in situ polymerization. J App Polym Sci 135:46157/1-46157/10. https://doi.org/10.1002/app.46157

    CAS  Article  Google Scholar 

  23. Hu Z, Ballinger S, Pelton R, Cranston ED (2015a) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148. https://doi.org/10.1016/j.jcis.2014.10.034

    CAS  Article  PubMed  Google Scholar 

  24. Hu Z, Patten T, Pelton R, Cranston ED (2015b) Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustain Chem Eng 3:1023–1031. https://doi.org/10.1021/acssuschemeng.5b00194

    CAS  Article  Google Scholar 

  25. Kajtna J, Šebenik U (2017) Novel acrylic/nanocellulose microsphere with improved adhesive properties. Int J Adhes Adhes 74:100–106. https://doi.org/10.1016/j.ijadhadh.2016.11.013

    CAS  Article  Google Scholar 

  26. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393. https://doi.org/10.1016/j.polymer.2017.09.043

    CAS  Article  Google Scholar 

  27. Karimi Shamsabadi M, Moghbeli MR (2017) Cellulose nanocrystals (CNCs) reinforced acrylic pressure-sensitive adhesives (PSAs) prepared via miniemulsion polymerization. Int J Adhes Adhes 78:155–166. https://doi.org/10.1016/j.ijadhadh.2017.06.024

    CAS  Article  Google Scholar 

  28. Kedzior SA, Marway HS, Cranston ED (2017) Tailoring cellulose nanocrystal and surfactant behavior in miniemulsion polymerization. Macromolecules 50:2645–2655. https://doi.org/10.1021/acs.macromol.7b00516

    CAS  Article  Google Scholar 

  29. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    CAS  Article  PubMed  Google Scholar 

  30. Limousin E, Rafaniello I, Schäfer T, Ballard N, Asua JM (2020) Linking film structure and mechanical properties in nanocomposite films formed from dispersions of cellulose nanocrystals and acrylic latexes. Langmuir 36:2052–2062. https://doi.org/10.1021/acs.langmuir.9b03861

    CAS  Article  PubMed  Google Scholar 

  31. Ma X, Zare Y, Rhee KY (2017) A two-step methodology to study the influence of aggregation/agglomeration of nanoparticles on Young’s modulus of polymer nanocomposites. Nanoscale Res Lett, 12:621/1–621/621/7. https://doi.org/10.1186/s11671-017-2386-0

    CAS  Article  Google Scholar 

  32. Mabrouk AB, Kaddami H, Magnin A, Belgacem MN, Dufresne A, Boufi S (2011) Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: effect of the silane content. Polym Eng Sci 51:62–70. https://doi.org/10.1002/pen.21778

    CAS  Article  Google Scholar 

  33. Mabrouk AB, Salon MCB, Magnin A, Belgacem MN, Boufi S (2014) Cellulose-based nanocomposites prepared via mini-emulsion polymerization: understanding the chemistry of the nanocellulose/matrix interface. Colloid Surf A Physicochem Eng Asp 448:1–8. https://doi.org/10.1016/j.colsurfa.2014.01.077

    CAS  Article  Google Scholar 

  34. Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

    CAS  Article  PubMed  Google Scholar 

  35. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806. https://doi.org/10.1002/polb.23490

    CAS  Article  Google Scholar 

  36. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    CAS  Article  Google Scholar 

  37. Nogueira T, Botan R, Wypych F, Lona L (2011) Study of thermal and mechanical properties of PMMA/LDHs nanocomposites obtained by in situ bulk polymerization. Compos Part A Appl Sci Manuf 42:1025–1030. https://doi.org/10.1016/j.compositesa.2011.04.006

    CAS  Article  Google Scholar 

  38. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    CAS  Article  Google Scholar 

  39. Ouzas A, Niinivaara E, Cranston ED, Dubé MA (2018) In situ semibatch emulsion polymerization of 2-ethyl hexyl acrylate/n‐butyl acrylate/methyl methacrylate/cellulose nanocrystal nanocomposites for adhesive applications. Macromol React Eng 12:1700068/1-1700068/10. https://doi.org/10.1002/mren.201700068

    CAS  Article  Google Scholar 

  40. Pakdel AS, Gabriel V, Berry RM, Fraschini C, Cranston ED, Dubé MA (2020) A sequential design approach for in situ incorporation of cellulose nanocrystals in emulsion-based pressure sensitive adhesives. Cellulose. https://doi.org/10.1007/s10570-020-03060-6

    Article  Google Scholar 

  41. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024

    CAS  Article  Google Scholar 

  42. Sain S, Bose M, Ray D, Mukhopadhyay A, Sengupta S, Kar T, Ennis CJ, Rahman PK, Misra M (2013) A comparative study of polymethylmethacrylate/cellulose nanocomposites prepared by in situ polymerization and ex situ dispersion techniques. J Reinf Plast Compos 32:147–159. https://doi.org/10.1177/0731684412449699

    CAS  Article  Google Scholar 

  43. Sain S, Ray D, Mukhopadhyay A (2015) Improved mechanical and moisture resistance property of in situ polymerized transparent PMMA/cellulose composites. Polym Compos 36:1748–1758. https://doi.org/10.1002/pc.23102

    CAS  Article  Google Scholar 

  44. Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26. https://doi.org/10.1016/j.carbpol.2015.08.082

    CAS  Article  PubMed  Google Scholar 

  45. Tang J, Lee MFX, Zhang W, Zhao B, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate]. Grafted Cellul Nanocryst Biomacromol 15:3052–3060. https://doi.org/10.1021/bm500663w

    CAS  Article  Google Scholar 

  46. Yamak HB (2013) Emulsion polymerization—effects of polymerization variables on the properties of vinyl acetate based emulsion polymers. In: Yilmaz F (ed) Polymer science. Intech Open. https://doi.org/10.5772/51498

  47. Yan Y, Herzele S, Mahendran RA, Edler M, Griesser T, Saake B, Li J, Gindl-Altmutter W (2016) Microfibrillated lignocellulose enables the suspension-polymerisation of unsaturated polyester resin for novel composite applications. Polymers 8:255/1–255/11. https://doi.org/10.3390/polym8070255

    CAS  Article  Google Scholar 

  48. Yu Q, Yang W, Wang Q, Dong W, Du M, Ma P (2019) Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr Polym 217:168–177. https://doi.org/10.1016/j.carbpol.2019.04.049

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to São Paulo Research Foundation—FAPESP (Grant 2016/18709-4 and 2018/12831-8) for financial support and Suzano Pulp and Paper for the kind donation of MFC. The authors also thank LNNano—Brazilian Nanotechnology National Laboratory, CNPEM/MCTIC for the technical support during the atomic force microscopy work and Espaço da Escrita—Pró-Reitoria de Pesquisa—UNICAMP—for the language services provided.

Funding

São Paulo Research Foundation—FAPESP (Grants 2016/18709-4 and 2018/12831-8).

Author information

Affiliations

Authors

Contributions

The manuscript was written with contributions of all authors. All authors have given approval to the final version of the manuscript. All authors contributed equally.

Corresponding author

Correspondence to Liliane M. F. Lona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare the research did not involve either human participation or animal testing.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the supplementary information

Supplementary material 1 (DOCX 314 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nozaki, A.P.M., Lona, L.M.F. Comparison between cellulose nanocrystal and microfibrillated cellulose as reinforcement of poly(vinyl acetate) composites obtained by either in situ emulsion polymerization or a simple mixing technique. Cellulose (2021). https://doi.org/10.1007/s10570-021-03691-3

Download citation

Keywords

  • Cellulose nanocrystal (CNC)
  • Microfibrillated cellulose (MFC) nanocomposites
  • Poly(vinyl acetate)
  • In situ emulsion polymerization