A novel biomass vitamin B6-based flame retardant for lyocell fibers

Abstract

A biomass vitamin B6-based flame retardant, ammonium salt of pyridoxine phosphoric ester acid (ASPPEA) was synthesized and used for modification of lyocell fibers. FTIR, XPS and EDX analyses indicated that lyocell fibers had been successfully grafted with ASPPEA. The ASPPEA improved the char-forming ability, as evidenced by the increase of the char residue (51 wt%) of ASPPEA-treated lyocell fibers. The limiting oxygen index (LOI) value of ASPPEA-treated lyocell fabrics increased up to 48.3%. After 450 min washing, the LOI value remained 30.8%, thus demonstrating the flame retardant durability. The total heat release of ASPPEA-treated lyocell fabrics decreased by 82.5%. During the pyrolysis, the ASPPEA decomposed to produce acidic substances which promoted the dehydration and char formation of lyocell fibers, thus blocked the exchange of heat and flammable gas. This research proposes a novel application of vitamin B6 to impart lyocell fibers with flame retardancy.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

References

  1. Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785. https://doi.org/10.1039/c3ta00107e

    CAS  Article  Google Scholar 

  2. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016

    CAS  Article  Google Scholar 

  3. Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS (2014) Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett 135:226–228. https://doi.org/10.1016/j.matlet.2014.07.131

    CAS  Article  Google Scholar 

  4. Basak S, Wazed Ali S (2018) Fire resistant behaviour of cellulosic textile functionalized with wastage plant bio-molecules: a comparative scientific report. Int J Biol Macromol 114:169–180. https://doi.org/10.1016/j.ijbiomac.2018.03.109

    CAS  Article  PubMed  Google Scholar 

  5. Basak S, Samanta KK, Chattopadhyay SK (2014) Fire retardant property of cotton fabric treated with herbal extract. J Text I 106:1338–1347. https://doi.org/10.1080/00405000.2014.995456

    CAS  Article  Google Scholar 

  6. Basak S, Saxena S, Chattopadhyay S, Narkar R, Mahangade R (2016) Banana pseudostem sap: a waste plant resource for making thermally stable cellulosic substrate. J Ind Text 46:1003–1023. https://doi.org/10.1177/1528083715591580

    CAS  Article  Google Scholar 

  7. Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94:372–377. https://doi.org/10.1016/j.carbpol.2012.12.075

    CAS  Article  PubMed  Google Scholar 

  8. Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54:5148–5153. https://doi.org/10.1016/j.polymer.2013.07.029

    CAS  Article  Google Scholar 

  9. Carosio F, Fontaine G, Alongi J, Bourbigot S (2015) Starch-based layer by layer assembly: efficient and sustainable approach to cotton fire protection. ACS Appl Mater Interfaces 7:12158–12167. https://doi.org/10.1021/acsami.5b02507

    CAS  Article  PubMed  Google Scholar 

  10. Chen X, Jiao C (2008) Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stab 93:2222–2225. https://doi.org/10.1016/j.polymdegradstab.2008.09.005

    CAS  Article  Google Scholar 

  11. Combs GF, McClung JP (2017) Vitamin B6. Vitam. https://doi.org/10.1016/b978-0-12-802965-7.00014-9

  12. Costes L, Laoutid F, Brohez S, Dubois P (2017) Bio-based flame retardants: when nature meets fire protection. Mat Sci Eng R 117:1–25. https://doi.org/10.1016/j.mser.2017.04.001

    Article  Google Scholar 

  13. Dong CH, He PS, Lu Z, Wang SG, Sui SY, Liu J, Zhang L, Zhu P (2017) Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. J Therm Anal Calorim 131:1079–1087. https://doi.org/10.1007/s10973-017-6604-x

    CAS  Article  Google Scholar 

  14. Fitzpatrick TB (2011) Vitamin B6 in plants. Biosynt Vitam Plants Part B. https://doi.org/10.1016/b978-0-12-385853-5.00006-4

  15. Horrocks AR (1996) Developments in flame retardants for heat and fire resistant textiles—the role of char formation and intumescence. Polym Degrad Stab 54:143–154. https://doi.org/10.1016/S0141-3910(96)00038-9

    CAS  Article  Google Scholar 

  16. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036

    CAS  Article  Google Scholar 

  17. Huang S, Zhong L, Li SN, Liu MS, Zhang Z, Zhang FX, Zhang GX (2019) A novel monosodium-glutamate-based flame retardant containing phosphorus for cotton fabrics. Cellulose 26:2715–2728. https://doi.org/10.1007/s10570-018-02241-8

    CAS  Article  Google Scholar 

  18. Joshi HD, Joshi DH, Patel MG (2010) Dyeing and finishing of lyocell union fibers: an industrial study. Color Technol 126:194–200. https://doi.org/10.1111/j.1478-4408.2010.00248.x

    CAS  Article  Google Scholar 

  19. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci C 36(4):721–794. https://doi.org/10.1080/15321799608014859

    Article  Google Scholar 

  20. Li C, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 21:1–26. https://doi.org/10.1002/pat.1550

    CAS  Article  Google Scholar 

  21. Li P, Wang B, Xu YJ, Jiang ZM, Dong CH, Liu Y, Zhu P (2019a) Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain Chem Eng 7(23):19246–19256. https://doi.org/10.1021/acssuschemeng.9b05523

    CAS  Article  Google Scholar 

  22. Li SN, Zhong L, Huang S, Wang DF, Zhang FX, Zhang GX (2019b) A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polym Degrad Stab 164:145–156. https://doi.org/10.1016/j.polymdegradstab.2019b.04.009

    CAS  Article  Google Scholar 

  23. Li P, Wang B, Liu YY, Xu YJ, Jiang ZM, Dong CH, Zhang L, Liu Y, Zhu P (2020) Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohyd Polym 237:116173. https://doi.org/10.1016/j.carbpol.2020.116173

    CAS  Article  Google Scholar 

  24. Liu XH, Zhang QY, Cheng BW, Ren YL, Zhang YG, Ding C (2018a) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811. https://doi.org/10.1007/s10570-017-1550-0

    CAS  Article  Google Scholar 

  25. Liu XH, Zhang YG, Cheng BW, Ren YL, Zhang QY, Ding C, Peng B (2018b) Preparation of durable and flame retardant lyocell fibers by a one-pot chemical treatment. Cellulose 25:799–811. https://doi.org/10.1007/s10570-018-2005-y

    CAS  Article  Google Scholar 

  26. Liu Y, Wang QQ, Jiang ZM, Zhang CZ, Li ZF, Chen HQ, Zhu P (2018c) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrol 135:289–298. https://doi.org/10.1016/j.jaap.2018c.08.024

    CAS  Article  Google Scholar 

  27. Liu XH, Ding C, Peng B, Ren YL, Cheng BW, Lin SG, He J, Su XW (2020a) Synthesis and application of a new, facile, and efficient sorbitol-based finishing agent for durable and flame retardant lyocell fibers. Cellulose 27:3427–3442. https://doi.org/10.1007/s10570-019-02894-z

    CAS  Article  Google Scholar 

  28. Liu XH, Zhang QY, Peng B, Ren YL, Cheng BW, Su XW, He J, Lin SG (2020b) Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. J Clean Prod 243:118641. https://doi.org/10.1016/j.jclepro.2019.118641

    CAS  Article  Google Scholar 

  29. Ortelli S, Malucelli G, Blosi M, Zanoni I, Luisa Costa A (2019) NanoTiO2@DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles. J Colloid Interfaces Sci 546:174–183. https://doi.org/10.1016/j.jcis.2019.03.055

    CAS  Article  Google Scholar 

  30. Qu ZC, Wu K, Jiao EX, Chen WL, Hu ZR, Xu CG, Shi J, Wang S, Tan ZY (2020) Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin. Chem Eng J 382:122991. https://doi.org/10.1016/j.cej.2019.122991

    CAS  Article  Google Scholar 

  31. Ren YL, Zhang Y, Zhao JY, Wang XL, Zeng Q, Gu YT (2017) Phosphorus-doped organic–inorganic hybrid silicon coating for improving fire retardancy of polyacrylonitrile fabric. J Sol–Gel Sci Technol 82:280–288. https://doi.org/10.1007/s10971-016-4273-z

    CAS  Article  Google Scholar 

  32. Ren YL, Huo TG, Qin YW, Liu XH (2018) Preparation of flame retardant polyacrylonitrile fabric based on sol–gel and layer-by-layer assembly. Materials 11:483. https://doi.org/10.3390/ma11040483

    CAS  Article  PubMed Central  Google Scholar 

  33. Ren YL, Liu YS, Wang Y, Guo X, Liu XH (2020) Preparation of durable and flame retardant lyocell fabrics by using a biomass-based modifier derived from vitamin C. Cellulose. https://doi.org/10.1007/s10570-020-03218-2

  34. Sahito IA, Sun KC, Arbab AA, Qadir MB, Jeong SH (2015) Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydr Polym 130:299–306. https://doi.org/10.1016/j.carbpol.2015.05.010

    CAS  Article  PubMed  Google Scholar 

  35. Spontón M, Ronda JC, Galià M, Cádiz V (2009) Cone calorimetry studies of benzoxazine-epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94:102–106. https://doi.org/10.1016/j.polymdegradstab.2008.10.005

    CAS  Article  Google Scholar 

  36. Wang X, Lu CQ, Chen CX (2014) Effect of chicken-feather protein-based flame retardant on flame retarding performance of cotton fabric. J Appl Polym Sci 131:40585. https://doi.org/10.1002/app.40584

    CAS  Article  Google Scholar 

  37. Wang D, Zhong L, Zhang C, Li SN, Tian PX, Zhang FX, Zhang GX (2018) Eco-friendly synthesis of a highly efficient phosphorus flame retardant based on xylitol and application on cotton fabric. Cellulose 26:2123–2138. https://doi.org/10.1007/s10570-018-2193-5

    CAS  Article  Google Scholar 

  38. Wang B, Li P, Xu YJ, Jiang ZM, Dong CH, Liu Y, Zhu P (2020a) Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos Part B Eng 194:108038. https://doi.org/10.1016/j.compositesb.2020a.108038

    CAS  Article  Google Scholar 

  39. Wang B, Xu YJ, Li P, Zhang FQ, Liu Y, Zhu P (2020b) Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Appl Surf Sci 509:145323. https://doi.org/10.1016/j.apsusc.2020b.145323

    CAS  Article  Google Scholar 

  40. Xu F, Zhong L, Zhang C, Wang P, Zhang FX, Zhang GX (2019) Novel high-efficiency casein-based P–N-containing flame retardants with multiple reactive groups for cotton fabrics. ACS Sustain Chem Eng 7:13999–14008. https://doi.org/10.1021/acssuschemeng.9b02474

    CAS  Article  Google Scholar 

  41. Yang JC, Liao W, Deng SB, Cao ZJ, Wang YZ (2016) Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr Polym 151:434–440. https://doi.org/10.1016/j.carbpol.2016.05.087

    CAS  Article  PubMed  Google Scholar 

  42. Zhang S, Horrocks R (2003) Substantive intumescent flame retardants for functional fibrous polymers. J Mater Sci 38: 2195–2198. https://doi.org/10.1023/A:1023784232290

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful for the financial support provided by the National Key Research and Development Program of China (No. 2017YFB0309000) and Quanzhou Science and Technology Bureau (No. 2019C104).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Liu or Yuanlin Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, X., Cheng, C., Zheng, Y. et al. A novel biomass vitamin B6-based flame retardant for lyocell fibers. Cellulose (2021). https://doi.org/10.1007/s10570-021-03681-5

Download citation

Keywords

  • Vitamin B6
  • Lyocell fibers
  • Flame retardancy
  • Thermal properties
  • Mechanism