Kinetic evaluation of tobacco stalk waste exposed to alkaline surface treatment under different conditions

Abstract

Lignocellulosic materials (some natural fibers) have relevant mechanical properties when incorporated in polymeric matrices, being a renewable source to replace synthetic fibers; however, for good adhesion and durability, it is necessary to modify the fibrous surface structure in order to eliminate unwanted compounds. This work aims to evaluate different conditions of alkaline treatment of tobacco stalk waste using 10 and 15 wt% sodium hydroxide (NaOH) during an exposure time of 3 or 5 h. Thermal, chemical, and morphological characterizations as well as kinetic analysis were performed. Through Fourier transform infrared spectroscopy, it was possible to identify the partial removal of compounds such as lignin, hemicellulose, and extractives, increasing the thermal stability, which was proven by thermogravimetric analysis. Furthermore, X-ray diffraction shows a higher crystallinity index from cellulose after the alkaline treatment. Through the kinetic analysis, it is possible to observe that both methods presented similar activation energy values (Ea). In addition, after the alkaline treatment there was a reduction in Ea, the most evident result being observed in the TSW\10\5 sample, which presented an average value of Ea of 223.95 ± 15.79 kJ/mol by the Flynn–Wall–Ozawa method and 218.74 ± 24.69 kJ/mol by the Friedman method. Scanning electron microscopy showed the exposure of the microfibrils and an enhancement of roughness after alkaline treatment. Tobacco stalk wastes has potential application as reinforcing filler in composite materials since surface alkaline modification provides higher fiber/matrix adhesion through the removal of amorphous compounds.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Afubra (Associação de Fumicultores do Brasil). Fumicultura no Brasil – 359 Evolução da fumicultura. https://afubra.com.br/fumicultura-360brasil.html. Accessed 05 April 2019.

  2. Ajouguim S, Abdelouahdi K, Waqif M et al (2019) Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26:1503–1516. https://doi.org/10.1007/s10570-018-2181-9

    CAS  Article  Google Scholar 

  3. Albinante SR, Pacheco ÉAVB, Visconte LLY (2013) Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Quim Nov 36:114–122

    CAS  Article  Google Scholar 

  4. Alves L, Medronho B, Antunes FE et al (2015) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq 210:106–112. https://doi.org/10.1016/j.molliq.2014.12.010

    CAS  Article  Google Scholar 

  5. Arenas CN, Navarro MV, Martínez JD (2019) Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresour Technol 288:121485. https://doi.org/10.1016/j.biortech.2019.121485

    CAS  Article  PubMed  Google Scholar 

  6. Arrieta MP, Peponi L, López D, Fernández-García M (2018) Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Ind Crops Prod 111:317–328. https://doi.org/10.1016/j.indcrop.2017.10.042

    CAS  Article  Google Scholar 

  7. Ashori A, Ornelas M, Sheshmani S, Cordeiro N (2012) Influence of mild alkaline treatment on the cellulosic surfaces active sites. Carbohydr Polym 88:1293–1298. https://doi.org/10.1016/j.carbpol.2012.02.008

    CAS  Article  Google Scholar 

  8. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  9. Beltrami LVR, Scienza LC, Zattera AJ (2014) Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compósitos de matriz biodegradável. Polimeros 24:388–394. https://doi.org/10.4322/polimeros.2014.024

    CAS  Article  Google Scholar 

  10. Benini KCCC, Ornaghi HL, Pereira PHF et al (2020) Survey on chemical, physical, and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-09221-5

    Article  Google Scholar 

  11. Bian H, Gao Y, Luo J et al (2019) Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Manag 91:1–8. https://doi.org/10.1016/j.wasman.2019.04.052

    CAS  Article  PubMed  Google Scholar 

  12. Bianchi O, Castel CD, De Oliveira RVB et al (2010) Avaliação da degradação não- isotérmica de madeira através de termogravimetria-TGA. Polimeros 20:395–400. https://doi.org/10.1590/S0104-14282010005000060

    CAS  Article  Google Scholar 

  13. Borsoi C, Dahlem Júnior MA, Beltrami LVR et al (2019a) Effects of alkaline treatment and kinetic analysis of agroindustrial residues from grape stalks and yerba mate fibers. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08666-y

    Article  Google Scholar 

  14. Borsoi C, Menin C, Lavoratti A et al (2019b) Grape stalk fibers as reinforcing filler for polymer composites with a polystyrene matrix. J Appl Polym Sci 136:1–10. https://doi.org/10.1002/app.47427

    CAS  Article  Google Scholar 

  15. Cai M, Takagi H, Nakagaito AN et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    CAS  Article  Google Scholar 

  16. Cardoso CR, Oliveira TJP, Santana Junior JA, Ataíde CH (2013) Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles: Density, particle size and shape distributions. Powder Technol 245:105–114. https://doi.org/10.1016/j.powtec.2013.04.029

    CAS  Article  Google Scholar 

  17. Carrillo-Varela I, Pereira M, Mendonça RT (2018) Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose 25:6831–6845. https://doi.org/10.1007/s10570-018-2060-4

    CAS  Article  Google Scholar 

  18. Castro JDS, das Virgens CF, (2019) Thermal decomposition of Nephelium lappaceum L. peel: Influence of chemical pretreatment and evaluation of pseudo-components by Fraser–Suzuki function. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08289-3

    Article  Google Scholar 

  19. Catto AL, Dahlem Júnior MA, Hansen B et al (2019) Characterization of polypropylene composites using yerba mate fibers as reinforcing filler. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2019.106935

    Article  Google Scholar 

  20. Chen B, Cai Y, Liu T et al (2019a) Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical–chemical treatments. Food Hydrocoll 93:167–175. https://doi.org/10.1016/j.foodhyd.2019.01.058

    CAS  Article  Google Scholar 

  21. Chen R, Lun L, Cong K et al (2019b) Insights into pyrolysis and co-pyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis. Energy 183:25–34. https://doi.org/10.1016/j.energy.2019.06.127

    CAS  Article  Google Scholar 

  22. Chong CT, Mong GR, Ng JH et al (2019) Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag 180:1260–1267. https://doi.org/10.1016/j.enconman.2018.11.071

    CAS  Article  Google Scholar 

  23. Cong K, Han F, Zhang Y, Li Q (2019) The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA. Fuel 237:126–132. https://doi.org/10.1016/j.fuel.2018.09.149

    CAS  Article  Google Scholar 

  24. Coral Medina JD, Woiciechowski A, Zandona Filho A et al (2015) Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment—a biorefinery approach. Bioresour Technol 194:172–178. https://doi.org/10.1016/j.biortech.2015.07.018

    CAS  Article  Google Scholar 

  25. Cordeiroa N, Ornelasa M, Ashorib A et al (2012) Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohydr Polym 87:2367–2375. https://doi.org/10.1016/j.carbpol.2011.11.001

    CAS  Article  Google Scholar 

  26. Cruz G, Santiago PA, Braz CEM et al (2018) Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim 132:1039–1053. https://doi.org/10.1007/s10973-018-7041-1

    CAS  Article  Google Scholar 

  27. da Silva Moura A, Demori R, Leão RM et al (2019) The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater Today Commun 18:191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006

    CAS  Article  Google Scholar 

  28. Dahlem MA, Borsoi C, Hansen B, Catto AL (2019) Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydr Polym 218:78–86. https://doi.org/10.1016/j.carbpol.2019.04.064

    CAS  Article  Google Scholar 

  29. de Souza AG, Rocha DB, Kano FS, dos Rosa D, S, (2019) Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods. Resour Conserv Recycl 143:133–142. https://doi.org/10.1016/j.resconrec.2018.12.031

    Article  Google Scholar 

  30. Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos Part B Eng 166:436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

    CAS  Article  Google Scholar 

  31. Elseify LA, Midani M, Shihata LA, El-Mously H (2019) Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 26:2209–2232. https://doi.org/10.1007/s10570-019-02259-6

    CAS  Article  Google Scholar 

  32. Espinosa E, Arrebola RI, Bascón-Villegas I et al (2020) Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose 27:10781–10797. https://doi.org/10.1007/s10570-020-03353-w

    CAS  Article  Google Scholar 

  33. Fadele O, Oguocha INA, Odeshi AG et al (2019) Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers. Cellulose 26:9463–9482. https://doi.org/10.1007/s10570-019-02764-8

    CAS  Article  Google Scholar 

  34. Fogorasi MS, Barbu I (2017) The potential of natural fibres for automotive sector—review. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/252/1/012044

    Article  Google Scholar 

  35. Fonseca AS, Panthapulakkal S, Konar SK et al (2019) Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Ind Crops Prod 131:203–212. https://doi.org/10.1016/j.indcrop.2019.01.046

    CAS  Article  Google Scholar 

  36. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  37. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  38. Gao W, Chen K (2017) Physical properties and thermal behavior of reconstituted tobacco sheet with precipitated calcium carbonate added in the coating process. Cellulose 24:2581–2590. https://doi.org/10.1007/s10570-017-1270-5

    CAS  Article  Google Scholar 

  39. Gao W, Chen K, Xiang Z et al (2013) Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Ind Crops Prod 44:152–157. https://doi.org/10.1016/j.indcrop.2012.10.032

    CAS  Article  Google Scholar 

  40. Ghalibaf M, Doddapaneni TRKC, Alén R (2019) Pyrolytic behavior of lignocellulosic-based polysaccharides. J Therm Anal Calorim 137:121–131. https://doi.org/10.1007/s10973-018-7919-y

    CAS  Article  Google Scholar 

  41. González A, Penedo M, Mauris E et al (2010) Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR. Biomass Bioenergy 34:1573–1577. https://doi.org/10.1016/j.biombioe.2010.06.004

    CAS  Article  Google Scholar 

  42. Gu S, Zhou J, Luo Z et al (2015) Kinetic study on the preparation of silica from rice husk under various pretreatments. J Therm Anal Calorim 119:2159–2169. https://doi.org/10.1007/s10973-014-4219-z

    CAS  Article  Google Scholar 

  43. Halder P, Kundu S, Patel S et al (2019) TGA-FTIR study on the slow pyrolysis of lignin and cellulose-rich fractions derived from imidazolium-based ionic liquid pre-treatment of sugarcane straw. Energy Convers Manag 200:112067. https://doi.org/10.1016/j.enconman.2019.112067

    CAS  Article  Google Scholar 

  44. Hansen B, Borsoi C, Dahlem Júnior MA, Catto AL (2019) Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Ind Crops Prod 140:111696. https://doi.org/10.1016/j.indcrop.2019.111696

    CAS  Article  Google Scholar 

  45. Herlina Sari N, Wardana ING, Irawan YS, Siswanto E (2018) Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J Nat Fibers 15:545–558. https://doi.org/10.1080/15440478.2017.1349707

    CAS  Article  Google Scholar 

  46. Jain D, Kamboj I, Bera TK et al (2019) Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. Int J Heat Mass Transf 130:431–439. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.106

    CAS  Article  Google Scholar 

  47. Jaroenkhasemmeesuk C, Tippayawong N (2016) Thermal degradation kinetics of sawdust under intermediate heating rates. Appl Therm Eng 103:170–176. https://doi.org/10.1016/j.applthermaleng.2015.08.114

    CAS  Article  Google Scholar 

  48. Jhu YS, Hung KC, Xu JW, Wu JH (2019) Effects of acetylation on the thermal decomposition kinetics of makino bamboo fibers. Wood Sci Technol 53:873–887. https://doi.org/10.1007/s00226-019-01105-z

    CAS  Article  Google Scholar 

  49. Kassab Z, Kassem I, Hannache H et al (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303. https://doi.org/10.1007/s10570-020-03097-7

    CAS  Article  Google Scholar 

  50. Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428. https://doi.org/10.1016/j.biortech.2017.11.077

    CAS  Article  PubMed  Google Scholar 

  51. Krishnaiah P, Ratnam CT, Manickam S (2017) Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason Sonochem 34:729–742. https://doi.org/10.1016/j.ultsonch.2016.07.008

    CAS  Article  PubMed  Google Scholar 

  52. Kuang Y, Li X, Luan P et al (2020) Cellulose II nanocrystal: a promising bio-template for porous or hollow nano SiO2 fabrication. Cellulose 27:3167–3179. https://doi.org/10.1007/s10570-020-02973-6

    CAS  Article  Google Scholar 

  53. Liang M, Zhang K, Lei P et al (2019) Fuel properties and combustion kinetics of hydrochar derived from co-hydrothermal carbonization of tobacco residues and graphene oxide. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00408-2

    Article  Google Scholar 

  54. Lim WL, Gunny AAN, Kasim FH et al (2019) Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping. Cellulose 26:4085–4098. https://doi.org/10.1007/s10570-019-02346-8

    CAS  Article  Google Scholar 

  55. Lin X, Kong L, Cai H et al (2019) Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Process Technol 191:71–78. https://doi.org/10.1016/j.fuproc.2019.03.015

    CAS  Article  Google Scholar 

  56. Liu Y, Xie J, Wu N et al (2019) Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26:4707–4719. https://doi.org/10.1007/s10570-019-02429-6

    CAS  Article  Google Scholar 

  57. Lu J, Lu H (2019) Enhanced Cd transport in the soil–plant–atmosphere continuum (SPAC) system by tobacco (Nicotiana tabacum L.). Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  58. Luo J, Li Q, Meng A et al (2018) Combustion characteristics of typical model components in solid waste on a macro-TGA. J Therm Anal Calorim 132:553–562. https://doi.org/10.1007/s10973-017-6909-9

    CAS  Article  Google Scholar 

  59. Madsen B, Aslan M, Lilholt H (2016) Fractographic observations of the microstructural characteristics of flax fibre composites. Compos Sci Technol 123:151–162. https://doi.org/10.1016/j.compscitech.2015.12.003

    CAS  Article  Google Scholar 

  60. Mallick D, Baruah D, Mahanta P, Moholkar VS (2018) A comprehensive kinetic analysis of bamboo waste using thermogravimetric analysis. In: 2nd international conference on power, energy and environment: towards smart technology (ICEPE), pp 1–6. https://doi.org/10.1109/EPETSG.2018.8658672

  61. Mattoso LHC, Iozzi MA, Martins GS et al (2010) Estudo da influência de tratamentos químicos da fibra de sisal nas propriedades de compósitos com borracha nitrílica. Polimeros 20:25–32. https://doi.org/10.1590/S0104-14282010005000003

    Article  Google Scholar 

  62. Mehmood MA, Ye G, Luo H et al (2017) Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24. https://doi.org/10.1016/j.biortech.2016.12.096

    CAS  Article  PubMed  Google Scholar 

  63. Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74. https://doi.org/10.1016/j.biortech.2017.12.029

    CAS  Article  PubMed  Google Scholar 

  64. Moghaddam KM, Karimi E (2020) The effect of oxidative bleaching treatment on Yucca fiber for potential composite application. Cellulose. https://doi.org/10.1007/s10570-020-03433-x

    Article  Google Scholar 

  65. Mohammed L, Ansari MNM, Pua G et al (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  66. Mondragon G, Fernandes S, Retegi A et al (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148. https://doi.org/10.1016/j.indcrop.2014.02.014

    CAS  Article  Google Scholar 

  67. Moonart U, Utara S (2019) Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 26:7271–7295. https://doi.org/10.1007/s10570-019-02611-w

    CAS  Article  Google Scholar 

  68. Naqvi SR, Tariq R, Hameed Z et al (2018) Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 233:529–538. https://doi.org/10.1016/j.fuel.2018.06.089

    CAS  Article  Google Scholar 

  69. Neto JSS, Lima RAA, Cavalcanti DKK et al (2019) Effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites. J Appl Polym Sci 136:1–13. https://doi.org/10.1002/app.47154

    CAS  Article  Google Scholar 

  70. Nomura S, Kugo Y, Erata T (2020) 13C NMR and XRD studies on the enhancement of cellulose II crystallinity with low concentration NaOH post-treatments. Cellulose 27:3553–3563. https://doi.org/10.1007/s10570-020-03036-6

    CAS  Article  Google Scholar 

  71. Norul Izani MA, Paridah MT, Anwar UMK et al (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos Part B Eng 45:1251–1257. https://doi.org/10.1016/j.compositesb.2012.07.027

    CAS  Article  Google Scholar 

  72. Ornaghi HL, Ornaghi FG, de Carvalho Benini KCC, Bianchi O (2019) A comprehensive kinetic simulation of different types of plant fibers: autocatalytic degradation mechanism. Cellulose 0123456789:7145–7157. https://doi.org/10.1007/s10570-019-02610-x

    CAS  Article  Google Scholar 

  73. Ornaghi HL, Poletto M, Zattera AJ, Amico SC (2014) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21:177–188. https://doi.org/10.1007/s10570-013-0094-1

    CAS  Article  Google Scholar 

  74. Pereira PHF, Ornaghi Júnior HL, Coutinho LV et al (2020) Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose 27:5745–5756. https://doi.org/10.1007/s10570-020-03179-6

    CAS  Article  Google Scholar 

  75. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    CAS  Article  Google Scholar 

  76. Polat S, Apaydin-Varol E, Pütün AE (2016) Thermal decomposition behavior of tobacco stem. Part I: TGA–FTIR–MS analysis. Energy Sour. Part A Recover Util Environ Effic 38:3065–3072. https://doi.org/10.1080/15567036.2015.1129373

    CAS  Article  Google Scholar 

  77. Rahib Y, Sarh B, Bostyn S et al (2019) Non-isothermal kinetic analysis of the combustion of argan shell biomass. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.07.437

    Article  Google Scholar 

  78. Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754. https://doi.org/10.1016/j.indcrop.2015.11.083

    CAS  Article  Google Scholar 

  79. Rashid B, Leman Z, Jawaid M et al (2016) Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23:2905–2916. https://doi.org/10.1007/s10570-016-1005-z

    CAS  Article  Google Scholar 

  80. Ribeiro FWM, Kotzebue LRV, Oliveira JR et al (2017) Thermal and mechanical analyses of biocomposites from cardanol-based polybenzoxazine and bamboo fibers. J Therm Anal Calorim 129:281–289. https://doi.org/10.1007/s10973-017-6191-x

    CAS  Article  Google Scholar 

  81. Ridzuan MJM, Majid MSA, Afendi M et al (2015) The effects of the alkaline treatment’s soaking exposure on the tensile strength of napier fibre. Procedia Manuf 2:353–358. https://doi.org/10.1016/j.promfg.2015.07.062

    Article  Google Scholar 

  82. Sampathkumar D, Punyamurthy R, Bennehalli B, Venkateshappa SC (2015) Physical characterization of natural lignocellulosic single areca fiber. Cienc e Tecnol dos Mater 27:121–135. https://doi.org/10.1016/j.ctmat.2015.10.001

    Article  Google Scholar 

  83. Sanjay MR, Madhu P, Jawaid M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    CAS  Article  Google Scholar 

  84. Sanjay MR, Siengchin S, Parameswaranpillai J et al (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    CAS  Article  Google Scholar 

  85. Santos CM, de Oliveira LS, Alves Rocha EP, Franca AS (2020) Thermal conversion of defective coffee beans for energy purposes: characterization and kinetic modeling. Renew Energy 147:1275–1291. https://doi.org/10.1016/j.renene.2019.09.052

    CAS  Article  Google Scholar 

  86. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  87. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    CAS  Article  PubMed  Google Scholar 

  88. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    CAS  Article  Google Scholar 

  89. Shakhes J, Marandi MAB, Zeinaly F et al (2011) Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. BioResources 6:4481–4493. https://doi.org/10.15376/biores.6.4.4481-4493

    CAS  Article  Google Scholar 

  90. Sobek S, Werle S (2020) Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 261:116459. https://doi.org/10.1016/j.fuel.2019.116459

    CAS  Article  Google Scholar 

  91. Soto-Salcido LA, Anugwom I, Ballinas-Casarrubias L et al (2020) NADES-based fractionation of biomass to produce raw material for the preparation of cellulose acetates. Cellulose 27:6831–6848. https://doi.org/10.1007/s10570-020-03251-1

    CAS  Article  Google Scholar 

  92. SriBala G, Chennuru R, Mahapatra S, Vinu R (2016) Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose 23:1725–1740. https://doi.org/10.1007/s10570-016-0893-2

    CAS  Article  Google Scholar 

  93. Su Y, Xian H, Shi S et al (2016) Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. BMC Biotechnol 16:1–9. https://doi.org/10.1186/s12896-016-0311-8

    CAS  Article  Google Scholar 

  94. Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fiber reinforced polypropylene composites: The effects of material treatments. Compos Part B Eng 114:15–22. https://doi.org/10.1016/j.compositesb.2017.02.001

    CAS  Article  Google Scholar 

  95. Sun D, Wang B, Wang H-M et al (2019a) Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Ind Crops Prod 140:111631. https://doi.org/10.1016/j.indcrop.2019.111631

    CAS  Article  Google Scholar 

  96. Sun Y, He Z, Tu R et al (2019b) The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk. Bioresour Technol 286:121390. https://doi.org/10.1016/j.biortech.2019.121390

    CAS  Article  PubMed  Google Scholar 

  97. Tarchoun AF, Trache D, Klapötke TM et al (2019) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26:7635–7651. https://doi.org/10.1007/s10570-019-02672-x

    CAS  Article  Google Scholar 

  98. Tallam A, Bairy SR, Kalakuntala R, et al. (2020) Kinetic modeling of Citrullus lanatus (watermelon) peel using thermo gravimetric analysis: 1–8. https://doi.org/https://doi.org/10.1515/cppm-2019-0076

  99. Tian X, Dai L, Wang Y et al (2019) Influence of torrefaction pretreatment on corncobs: a study on fundamental characteristics, thermal behavior, and kinetic. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122490

    Article  PubMed  Google Scholar 

  100. Tuzzin G, Godinho M, Dettmer A, Zattera AJ (2015) Análise estatística da polpação de talos de tabaco por explosão a vapor. O Pap 76:61–70

    Google Scholar 

  101. Tuzzin G, Godinho M, Dettmer A, Zattera AJ (2016) Nanofibrillated cellulose from tobacco industry wastes. Carbohydr Polym 148:69–77. https://doi.org/10.1016/j.carbpol.2016.04.045

    CAS  Article  PubMed  Google Scholar 

  102. Väisänen T, Haapala A, Lappalainen R, Tomppo L (2016) Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag 54:62–73. https://doi.org/10.1016/j.wasman.2016.04.037

    CAS  Article  PubMed  Google Scholar 

  103. Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159. https://doi.org/10.1016/j.matdes.2012.12.001

    CAS  Article  Google Scholar 

  104. Wahlström N, Edlund U, Pavia H et al (2020) Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 27:3707–3725. https://doi.org/10.1007/s10570-020-03029-5

    CAS  Article  Google Scholar 

  105. Wang C, Li L, Chen R et al (2019) Thermal conversion of tobacco stem into gaseous products. J Therm Anal Calorim 137:811–823. https://doi.org/10.1007/s10973-019-08010-4

    CAS  Article  Google Scholar 

  106. Wang Q, Du H, Zhang F et al (2018a) Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk: Via a sustainable method. J Mater Chem A 6:13021–13030. https://doi.org/10.1039/c8ta01986j

    CAS  Article  Google Scholar 

  107. Wang H, Chen C, Fang L et al (2018b) Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood. Cellulose 25:7003–7015. https://doi.org/10.1007/s10570-018-2054-2

    CAS  Article  Google Scholar 

  108. Wu W, Mei Y, Zhang L et al (2015) Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel 156:71–80. https://doi.org/10.1016/j.fuel.2015.04.016

    CAS  Article  Google Scholar 

  109. Yang Y, Li T, Jin S et al (2011) Catalytic pyrolysis of tobacco rob: Kinetic study and fuel gas produced. Bioresour Technol 102:11027–11033. https://doi.org/10.1016/j.biortech.2011.09.053

    CAS  Article  PubMed  Google Scholar 

  110. Yao F, Wu Q, Lei Y et al (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    CAS  Article  Google Scholar 

  111. Yıldız Z, Ceylan S (2018) Pyrolysis of tobacco factory waste biomass: TG-FTIR analysis, kinetic study and bio-oil characterization. J Therm Anal Calorim 136:783–794. https://doi.org/10.1007/s10973-018-7630-z

    CAS  Article  Google Scholar 

  112. Yu D, Hu S, Liu W et al (2020) Pyrolysis of oleaginous yeast biomass from wastewater treatment: kinetics analysis and biocrude characterization. Renew Energy. https://doi.org/10.1016/j.renene.2020.01.028

    Article  Google Scholar 

  113. Yue Y, Han J, Han G et al (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363. https://doi.org/10.1016/j.indcrop.2015.07.006

    CAS  Article  Google Scholar 

  114. Zhang X, Deng H, Yang J et al (2020) Isoconversional kinetics of pyrolysis of vaporthermally carbonized bamboo. Renew Energy 149:701–707. https://doi.org/10.1016/j.renene.2019.12.037

    CAS  Article  Google Scholar 

  115. Zhang Y, He Q, Cao Y et al (2019) Interactions of tobacco shred and other tobacco-based materials during co-pyrolysis and co-combustion. J Therm Anal Calorim 136:1711–1721. https://doi.org/10.1007/s10973-018-7836-0

    CAS  Article  Google Scholar 

  116. Zhao D, Yang F, Dai Y et al (2017) Exploring crystalline structural variations of cellulose during pulp beating of tobacco stems. Carbohydr Polym 174:146–153. https://doi.org/10.1016/j.carbpol.2017.06.060

    CAS  Article  PubMed  Google Scholar 

  117. Zhao G, Du J, Chen W et al (2019) Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose 26:8625–8643. https://doi.org/10.1007/s10570-019-02683-8

    CAS  Article  Google Scholar 

  118. Zheng C, Li D, Ek M (2019) Mechanism and kinetics of thermal degradation of insulating materials developed from cellulose fiber and fire retardants. J Therm Anal Calorim 135:3015–3027. https://doi.org/10.1007/s10973-018-7564-5

    CAS  Article  Google Scholar 

  119. Zimmermann MVG, Borsoi C, Lavoratti A et al (2016) Drying techniques applied to cellulose nanofibers. J Reinf Plast Compos 35:682–697. https://doi.org/10.1177/0731684415626286

    CAS  Article  Google Scholar 

  120. Zsakó J (1968) Kinetic analysis of thermogravimetric data. J Phys Chem 72:2406–2411. https://doi.org/10.1021/j100853a022

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES and UNIVATES for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danieli Dallé.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Partial financial support for carrying out the work was received from Coordination for the Improvement of Higher Education Personnel (CAPES) and University of Taquari Valley (UNIVATES).

Ethical standard

This research did not involve the participation of humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dallé, D., Hansen, B., Zattera, A.J. et al. Kinetic evaluation of tobacco stalk waste exposed to alkaline surface treatment under different conditions. Cellulose (2021). https://doi.org/10.1007/s10570-020-03657-x

Download citation

Keywords

  • Tobacco’s stalk waste
  • Alkaline treatment
  • Surface modification
  • Isoconversional kinetic