A tailored magnetic composite synthesized by graphene oxide, chitosan and aminopolycarboxylic acid for diminishing dye contaminant

Abstract

This research study aims to remove methyl violet from aqueous solutions with a novel composite. The composite was synthesized by magnetite nanoparticles decorated with amino-silane, graphene oxide, and grafted chitosan-diethylenetriaminepentaacetic acid. The adsorbent was characterized by FT-IR, XRD, FESEM, TEM, EDX, elemental mapping, TGA, VSM, and BET. The Central Composite Design was used for planning the adsorption experiments. The maximum dye removal was equal to 94.87% for an initial dye concentration of 10.0 mg L−1. The coulombic attraction, H-bonding, and pi stacking interactions were proposed as the key factors for dye removal. The initial pH and temperature were fixed at 9.8 and 52.3 °C and the adsorbent dosage was 2.0 g L−1 in the kinetics and equilibrium studies. The adsorption process was almost completed within five min. The modified pseudo-n-order model was the best equation to fit the kinetics data. It was demonstrated that film diffusion was the rate-limiting step at the initial stages of dye removal after which the dye adsorption was the rate-determining step. The equilibrium data was fitted by modified Langmuir–Freundlich isotherm and the maximum equilibrium adsorption was 243.8 mg g−1. Besides, the composite recovery was done by a low amount of acidic eluent. The adsorption efficiency did not change even after five desorption-adsorption cycles.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Scheme 3
Fig. 12
Scheme 4
Fig. 13
Fig. 14
Fig. 15
Scheme 5
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data availability

All data and materials as well as software application support published claims and comply with field standards.

Abbreviations

APTES:

3-Aminopropyltriethoxysilane

CS:

Chitosan

DTPA:

Diethylenetriaminepentaacetic acid

GO:

Graphene oxide

MV:

Methyl violet

NHS:

N-hydroxysuccinimide

DCC:

N,N′-dicyclohexylcarbodiimide

DMF:

N,N-dimethylformamide

References

  1. Adams EQ, Rosenstein L (1914) The color and ionization of crystal-violet. J Am Chem Soc 36:1452–1473. https://doi.org/10.1021/ja02184a014

    CAS  Article  Google Scholar 

  2. Archin S, Sharifi SH, Asadpour G (2019) Optimization and modeling of simultaneous ultrasound-assisted adsorption of binary dyes using activated carbon from tobacco residues: response surface methodology. J Clean Prod 239:118136–118150. https://doi.org/10.1016/j.jclepro.2019.118136

    CAS  Article  Google Scholar 

  3. Asadzadeh F, Maleki-Kaklar M, Soiltanalinejad N, Shabani F (2018) Central composite design optimization of zinc removal from contaminated soil, using citric acid as biodegradable chelant. Sci Rep 8:2633–2640. https://doi.org/10.1038/s41598-018-20942-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Astuti W, Chafidz A, Wahyuni ET, Prasetya A, Bendiyasa IM, Abasaeed AE (2019a) Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. J Environ Chem Eng 7:103262–103271. https://doi.org/10.1016/j.jece.2019.103262

    CAS  Article  Google Scholar 

  5. Astuti W, Sulistyaningsih T, Kusumastuti E, Thomas GYRS, Kusnadi RY (2019b) Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour Technol 287:121426–121433. https://doi.org/10.1016/j.biortech.2019.121426

    CAS  Article  PubMed  Google Scholar 

  6. Azizian S, Fallah RN (2010) A new empirical rate equation for adsorption kinetics at solid/solution interface. Appl Surf Sci 256:5153–5156. https://doi.org/10.1016/j.apsusc.2009.12.080

    CAS  Article  Google Scholar 

  7. Azizian S, Eris S, Wilson LD (2018) Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem Phys 513:99–104. https://doi.org/10.1016/j.chemphys.2018.06.022

    CAS  Article  Google Scholar 

  8. Bagherzadeh M, Mortazavi-Manesh A (2016) Nanoparticle supported, magnetically separable manganese porphyrin as an efficient retrievable nanocatalyst in hydrocarbon oxidation reactions. RSC Adv 6:41551–41560. https://doi.org/10.1039/C6RA02123A

    CAS  Article  Google Scholar 

  9. Bakhtiari N, Azizian S (2018) Nanoporous carbon derived from MOF-5: a superadsorbent for copper ions. ACS Omega 3:16954–16959. https://doi.org/10.1021/acsomega.8b02278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Bhatt R, Sreedhar B, Padmaja P (2015) Adsorption of chromium from aqueous solutions using crosslinked chitosan–diethylenetriaminepentaacetic acid. Int J Biol Macromol 74:458–466. https://doi.org/10.1016/j.ijbiomac.2014.12.041

    CAS  Article  PubMed  Google Scholar 

  11. Binaeian E, Mottaghizad M, Kasgary AH, Babaee Zadvarzi S (2020) Bovine serum albumin adsorption by Bi-functionalized HMS, nitrilotriacetic acid-amine modified hexagonal mesoporous silicate. Solid State Sci 103:106194–106204. https://doi.org/10.1016/j.solidstatesciences.2020.106194

    CAS  Article  Google Scholar 

  12. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507. https://doi.org/10.1016/0043-1354(84)90124-6

    CAS  Article  Google Scholar 

  13. Bonetto LR, Ferrarini F, de Marco C, Crespo JS, Guégan R, Giovanela M (2015) Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. J Water Process Eng 6:11–20. https://doi.org/10.1016/j.jwpe.2015.02.006

    Article  Google Scholar 

  14. Borhan AI, Gherca D, Cojocaru Ş, Lupu N, Roman T, Zaharia M, Palamaru MN, Iordan AR (2020) One-pot synthesis of hierarchical magnetic porous γ-Fe2O3@NiFe2O4 composite with solid-phase morphology changes promoted by adsorption of anionic azo-dye. Mater Res Bull 122:110664–110670. https://doi.org/10.1016/j.materresbull.2019.110664

    CAS  Article  Google Scholar 

  15. Chatha SAS, Asgher M, Asgher R, Hussain AI, Iqbal Y, Hussain SM, Bilal M, Saleem F, Iqbal HMN (2019) Environmentally responsive and anti-bugs textile finishes—recent trends, challenges, and future perspectives. Sci Total Environ 690:667–682. https://doi.org/10.1016/j.scitotenv.2019.06.520

    CAS  Article  PubMed  Google Scholar 

  16. Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252:149–156. https://doi.org/10.1016/j.desal.2009.10.010

    CAS  Article  Google Scholar 

  17. Chen B, Zhao H, Chen S, Long F, Huang B, Yang B, Pan X (2019) A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem Eng J 356:69–80. https://doi.org/10.1016/j.cej.2018.08.222

    CAS  Article  Google Scholar 

  18. Chen Z, Zhang S, Liu Y, Alharbi NS, Rabah SO, Wang S, Wang X (2020) Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci Total Environ 731:139054. https://doi.org/10.1016/j.scitotenv.2020.139054

    CAS  Article  PubMed  Google Scholar 

  19. Cortinez D, Palma P, Castro R, Palza H (2020) A multifunctional bi-phasic graphene oxide/chitosan paper for water treatment. Sep Purif Technol 235:116181–116188. https://doi.org/10.1016/j.seppur.2019.116181

    CAS  Article  Google Scholar 

  20. Demirbas E, Nas MZ (2009) Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination 243:8–21. https://doi.org/10.1016/j.desal.2008.04.011

    CAS  Article  Google Scholar 

  21. Duan J, Liu R, Chen T, Zhang B, Liu J (2012) Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions. Desalination 293:46–52. https://doi.org/10.1016/j.desal.2012.02.022

    CAS  Article  Google Scholar 

  22. Durham EJ, Ryskiewich DP (1958) The acid dissociation constants of diethylenetriaminepentaacetic acid and the stability constants of some of its metal chelates. J Am Chem Soc 80:4812–4817. https://doi.org/10.1021/ja01551a015

    CAS  Article  Google Scholar 

  23. Duynstee EFJ, Grunwald E (1959) Organic reactions occurring in or on micelles. II. Kinetic and thermodynamic analysis of the alkaline fading of triphenylmethane dyes in the presence of detergent salts. J Am Chem Soc 81:4542–4548. https://doi.org/10.1021/ja01526a026

    CAS  Article  Google Scholar 

  24. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  25. Gabbott P (2008) Principles and applications of thermal analysis. Wiley, Oxford

    Google Scholar 

  26. Haerifar M, Azizian S (2012) Fractal-like adsorption kinetics at the solid/solution interface. J Phys Chem C 116:13111–13119. https://doi.org/10.1021/jp301261h

    CAS  Article  Google Scholar 

  27. Haerifar M, Azizian S (2014) Fractal-like kinetics for adsorption on heterogeneous solid surfaces. J Phys Chem C 118:1129–1134. https://doi.org/10.1021/jp4110882

    CAS  Article  Google Scholar 

  28. Hamza MF, Wei Y, Mira HI, Abdel-Rahman AAH, Guibal E (2019) Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem Eng J 362:310–324. https://doi.org/10.1016/j.cej.2018.11.225

    CAS  Article  Google Scholar 

  29. Huang X, Zhan X, Wen C, Xu F, Luo L (2018) Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. J Mater Sci Technol 34:855–863. https://doi.org/10.1016/j.jmst.2017.03.013

    Article  Google Scholar 

  30. Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S (2015) Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. J Clean Prod 89:1–17. https://doi.org/10.1016/j.jclepro.2014.11.013

    CAS  Article  Google Scholar 

  31. Karami S, Zeynizadeh B (2019) Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu2+. Carbohydr Polym 211:298–307. https://doi.org/10.1016/j.carbpol.2019.01.113

    CAS  Article  PubMed  Google Scholar 

  32. Khan EA, Shahjahan, Khan TA (2019) Synthesis of magnetic iron-manganese oxide coated graphene oxide and its application for adsorptive removal of basic dyes from aqueous solution: isotherm, kinetics, and thermodynamic studies. Environ Prog Sustain Energy 38:S214–S229. https://doi.org/10.1002/ep.12974

    CAS  Article  Google Scholar 

  33. Kharazi P, Rahimi R, Rabbani M (2019) Copper ferrite-polyaniline nanocomposite: structural, thermal, magnetic and dye adsorption properties. Solid State Sci 93:95–100. https://doi.org/10.1016/j.solidstatesciences.2019.05.007

    CAS  Article  Google Scholar 

  34. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J Phys Chem Lett 3:867–872. https://doi.org/10.1021/jz300236w

    CAS  Article  PubMed  Google Scholar 

  35. Kyzas GZ (2015) Advanced functional materials. Wiley, New York

    Google Scholar 

  36. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetensk Akad Handl 24:1–39

    Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    CAS  Article  Google Scholar 

  38. Li Q, Xu B, Zhuang L, Xu X, Wang G, Zhang X, Chen J, Tang Y (2018) Preparation, characterization, adsorption kinetics and thermodynamics of chitosan adsorbent grafted with a hyperbranched polymer designed for Cr(VI) removal. Cellulose 25:3471–3486. https://doi.org/10.1007/s10570-018-1791-6

    CAS  Article  Google Scholar 

  39. Li Y, Xiao H, Pan Y, Zhang M, Jin Y (2019) Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems. J Hazard Mater 377:88–97. https://doi.org/10.1016/j.jhazmat.2019.05.033

    CAS  Article  PubMed  Google Scholar 

  40. Liu R, Zhang B, Mei D, Zhang H, Liu J (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268:111–116. https://doi.org/10.1016/j.desal.2010.10.006

    CAS  Article  Google Scholar 

  41. Liu F, Niu F, Peng N, Su Y, Yang Y (2015) Synthesis, characterization, and application of Fe3O4@SiO2–NH2 nanoparticles. RSC Adv 5:18128–18136. https://doi.org/10.1039/C4RA15968C

    CAS  Article  Google Scholar 

  42. Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X, Wang X (2020) Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1734433

    Article  Google Scholar 

  43. López-Covarrubias JG, Soto-Muñoz L, Iglesias AL, Villarreal-Gómez LJ (2019) Electrospun nanofibers applied to dye solar sensitive cells: a review. Materials (Basel) 12:3190–3207. https://doi.org/10.3390/ma12193190

    CAS  Article  Google Scholar 

  44. Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312. https://doi.org/10.1021/cr60205a003

    CAS  Article  Google Scholar 

  45. Ma H, Kong A, Ji Y, He B, Song Y, Li J (2019) Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J Clean Prod 214:89–94. https://doi.org/10.1016/j.jclepro.2018.12.217

    CAS  Article  Google Scholar 

  46. Mahmoud ME, Amira MF, Zaghloul AA, Ibrahim GAA (2016) Microwave-enforced sorption of heavy metals from aqueous solutions on the surface of magnetic iron oxide-functionalized-3-aminopropyltriethoxysilane. Chem Eng J 293:200–206. https://doi.org/10.1016/j.cej.2016.02.056

    CAS  Article  Google Scholar 

  47. Malkoc E, Nuhoglu Y (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater 127:120–128. https://doi.org/10.1016/j.jhazmat.2005.06.030

    CAS  Article  PubMed  Google Scholar 

  48. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Marczewski AW (2010) Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl Surf Sci 256:5145–5152. https://doi.org/10.1016/j.apsusc.2009.12.078

    CAS  Article  Google Scholar 

  50. McMurry JE (2010) Fundamentals of organic chemistry. Cengage Learning, Belmont

    Google Scholar 

  51. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. React Funct Polym 70:257–266. https://doi.org/10.1016/j.reactfunctpolym.2010.01.002

    CAS  Article  Google Scholar 

  52. Nasiri R, Arsalani N, Panahian Y (2018) One-pot synthesis of novel magnetic three-dimensional graphene/chitosan/nickel ferrite nanocomposite for lead ions removal from aqueous solution: RSM modelling design. J Clean Prod 201:507–515. https://doi.org/10.1016/j.jclepro.2018.08.059

    CAS  Article  Google Scholar 

  53. Newbury DE, Ritchie NWM (2013) Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 35:141–168. https://doi.org/10.1002/sca.21041

    CAS  Article  PubMed  Google Scholar 

  54. Ofomaja AE, Ho Y-S (2008) Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresour Technol 99:5411–5417. https://doi.org/10.1016/j.biortech.2007.11.018

    CAS  Article  PubMed  Google Scholar 

  55. Olusegun SJ, Mohallem NDS (2020) Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles. Environ Pollut 260:114019–114029. https://doi.org/10.1016/j.envpol.2020.114019

    CAS  Article  PubMed  Google Scholar 

  56. Özer A (2007) Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. J Hazard Mater 141:753–761. https://doi.org/10.1016/j.jhazmat.2006.07.040

    CAS  Article  PubMed  Google Scholar 

  57. Park S, Oh Y, Yun J, Yoo E, Jung D, Oh KK, Lee SH (2020) Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 27:2757–2773. https://doi.org/10.1007/s10570-020-02974-5

    CAS  Article  Google Scholar 

  58. Parlayici Ş (2019) Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: kinetic, thermodynamic, and equilibrium studies. J Anal Sci Technol 10:4–18. https://doi.org/10.1186/s40543-019-0165-5

    Article  Google Scholar 

  59. Pavia DL, Lampman GM, Kriz GS (2015) Introduction to spectroscopy. Cengage Learning, Belmont

    Google Scholar 

  60. Pereira L, Alves M (2012) Dyes-environmental impact and remediation. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, New York, pp 111–162

    Google Scholar 

  61. Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192. https://doi.org/10.1006/jcis.1999.6185

    CAS  Article  PubMed  Google Scholar 

  62. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024. https://doi.org/10.1021/j150576a611

    CAS  Article  Google Scholar 

  63. Rovina K, Siddiquee S, Shaarani SM (2017) Toxicology, extraction and analytical methods for determination of Amaranth in food and beverage products. Trends Food Sci Technol 65:68–79. https://doi.org/10.1016/j.tifs.2017.05.008

    CAS  Article  Google Scholar 

  64. Sabnis RW (2007) Handbook of acid-base indicators. CRC Press, New York

    Google Scholar 

  65. Sabnis RW (2010) Handbook of biological dyes and stains: synthesis and industrial applications. Wiley, New Jersey

    Google Scholar 

  66. Sarkar AK, Bediako JK, Choi J-W, Yun Y-S (2019) Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification. NPG Asia Mater 11:4–13. https://doi.org/10.1038/s41427-018-0104-8

    CAS  Article  Google Scholar 

  67. Shindo D, Oikawa T (1999) Analytical electron microscopy for materials science. Springer, Tokyo

    Google Scholar 

  68. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495. https://doi.org/10.1063/1.1746922

    CAS  Article  Google Scholar 

  69. Skoog DA, West DM, Holler FJ, Crouch SR (2014) Fundamentals of analytical chemistry, 9th edn. Cengage Learning, Belmont

    Google Scholar 

  70. Skoog DA, Holler FJ, Crouch SR (2017) Principles of instrumental analysis, 7th edn. Cengage Learning, Boston

    Google Scholar 

  71. Soleymani AR, Mahdiei M, Haerifar M (2019) Nano-titania/light expanded clay aggregate fixed bed as an effective adsorbent for removal of organic pollutant from water: Equilibrium and kinetic studies. J Clean Prod 211:1328–1338. https://doi.org/10.1016/j.jclepro.2018.11.258

    CAS  Article  Google Scholar 

  72. Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS 12:327–356

    CAS  Google Scholar 

  73. Tenório-Neto ET, Jamshaid T, Eissa M, Kunita MH, Zine N, Agusti G, Fessi H, El-Salhi AE, Elaissari A (2015) TGA and magnetization measurements for determination of composition and polymer conversion of magnetic hybrid particles. Polym Adv Technol 26:1199–1208. https://doi.org/10.1002/pat.3562

    CAS  Article  Google Scholar 

  74. Toth J (1971) State equation of the solid-gas interface layers. Acta Chim Acad Sci Hung 69:311–328

    CAS  Google Scholar 

  75. Wakkel M, Khiari B, Zagrouba F (2019) Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies. Environ Sci Pollut Res 26:18942–18960. https://doi.org/10.1007/s11356-018-2192-y

    CAS  Article  Google Scholar 

  76. Wang L, Hu D, Kong X, Liu J, Li X, Zhou K, Zhao H, Zhou C (2018) Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chem Eng J 346:38–49. https://doi.org/10.1016/j.cej.2018.03.084

    CAS  Article  Google Scholar 

  77. Wang H, Lai X, Zhao W, Chen Y, Yang X, Meng X, Li Y (2019) Efficient removal of crystal violet dye using EDTA/graphene oxide functionalized corncob: a novel low cost adsorbent. RSC Adv 9:21996–22003. https://doi.org/10.1039/C9RA04003J

    CAS  Article  Google Scholar 

  78. Xu R, Xiao S, Yuan J, Zhao A (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298. https://doi.org/10.1016/j.biortech.2011.08.089

    CAS  Article  PubMed  Google Scholar 

  79. Yao C (2000) Extended and improved Langmuir equation for correlating adsorption equilibrium data. Sep Purif Technol 19:237–242. https://doi.org/10.1016/S1383-5866(00)00060-5

    CAS  Article  Google Scholar 

  80. Zhang H, Dang Q, Liu C, Yu D, Wang Y, Pu X, Liu Y, Liang Y, Cha D (2019a) Fabrication of methyl acrylate and tetraethylenepentamine grafted magnetic chitosan microparticles for capture of Cd(II) from aqueous solutions. J Hazard Mater 366:346–357. https://doi.org/10.1016/j.jhazmat.2018.12.006

    CAS  Article  PubMed  Google Scholar 

  81. Zhang L, Sellaoui L, Franco D, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Oliveira MLS, Li Z (2019b) Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: analytical interpretation via multilayer statistical physics model. Chem Eng J 382:122952–122958. https://doi.org/10.1016/j.cej.2019.122952

    CAS  Article  Google Scholar 

  82. Zhao B, Sun X, Wang L, Zhao L, Zhang Z, Li J (2019) Adsorption of methyl orange from aqueous solution by composite magnetic microspheres of chitosan and quaternary ammonium chitosan derivative. Chin J Chem Eng 27:1973–1980. https://doi.org/10.1016/j.cjche.2018.12.014

    CAS  Article  Google Scholar 

  83. Zhong F, He Y, Wang P, Chen C, Lin Y, Wu Y, Chen J (2019) Self-assembled graphene oxide-graphene hybrids for enhancing the corrosion resistance of waterborne epoxy coating. Appl Surf Sci 488:801–812. https://doi.org/10.1016/j.apsusc.2019.05.321

    CAS  Article  Google Scholar 

  84. Zhou L, Pan S, Chen X, Zhao Y, Zou B, Jin M (2014) Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2–MWCNTs core–shell magnetic microspheres. Chem Eng J 257:10–19. https://doi.org/10.1016/j.cej.2014.07.060

    CAS  Article  Google Scholar 

  85. Zolfigol MA, Ayazi-Nasrabadi R, Baghery S, Khakyzadeh V, Azizian S (2016) Applications of a novel nano magnetic catalyst in the synthesis of 1,8-dioxo-octahydroxanthene and dihydropyrano[2,3-c]pyrazole derivatives. J Mol Catal A Chem 418:54–67. https://doi.org/10.1016/j.molcata.2016.03.027

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to Bu-Ali Sina University for supporting this work.

Funding

This study was funded by Bu-Ali Sina University (Grant No. 95-287).

Author information

Affiliations

Authors

Contributions

SA: Conceptualization, Methodology, Funding acquisition, Project administration, Writing—original draft, Writing—review and editing. ZM: Investigation, Validation, Writing—original draft.

Corresponding author

Correspondence to Simin Asadabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

It is declared that this manuscript is containing original research, and has not been published in any journal, and is not being simultaneously considered for publication elsewhere. Submission of this paper has been made with full responsibility, based on the journal requirements, and there are no plagiarism and concerns about animal or human experimentation. The manuscript has been approved by authors who have significantly contributed and agreed with its submission to Cellulose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 389 kb)

Supplementary material 2 (DOCX 11065 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asadabadi, S., Merati, Z. A tailored magnetic composite synthesized by graphene oxide, chitosan and aminopolycarboxylic acid for diminishing dye contaminant. Cellulose (2021). https://doi.org/10.1007/s10570-020-03623-7

Download citation

Keywords

  • Composites
  • Tailored magnetite nanoparticles
  • Chitosan
  • Graphene oxide
  • DTPA
  • Methyl violet