Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel

Abstract

Hydrophobic microcrystalline cellulose (MCC) aerogel is synthesized using microcrystalline cellulose and NaOH/urea solution as precursors through the sol–gel route and alkylation hydrophobic coagulation bath. Especially, the effects of different drying modes and content of MCC on the physical chemistry properties are investigated. The results show that samples using nano-self-assembly method combined supercritical CO2 drying possess loose and uniform porous three-dimensional network structure. The specific surface areas before and after modification are 180.28 m2/g and 154.37 m2/g with average pore sizes at 22.58 nm and 25.71 nm. The hydrophobic angle is up to 154.3°, the maximum adsorption efficiency can reach 12 g/g, which is also of reusability after 5 adsorption tests. This hydrophobic MCC aerogel has excellent adsorption performance, and simple, rapid, effective oil contamination treatment which is of use in oil adsorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Benner J et al (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976. https://doi.org/10.1016/j.watres.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  2. Bohn PW, Mariñas BJ, Georgiadis JG, Mayes AM, Shannon MA, Elimelech M (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. https://doi.org/10.1038/nature06599

    CAS  Article  PubMed  Google Scholar 

  3. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. https://doi.org/10.1002/mabi.200400222

    CAS  Article  PubMed  Google Scholar 

  4. Chaudhary JP, Vadodariya N, Nataraj SK, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interfaces 7:24957–24962. https://doi.org/10.1021/acsami.5b08705

    CAS  Article  PubMed  Google Scholar 

  5. Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54:2328–2338. https://doi.org/10.1002/anie.201405785

    CAS  Article  Google Scholar 

  6. Cui S et al (2018) Preparation of magnetic MnFe2O4-Cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25:735–751. https://doi.org/10.1007/s10570-017-1598-x

    CAS  Article  Google Scholar 

  7. Dai J et al (2018) 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater Design 139:122–131. https://doi.org/10.1016/j.matdes.2017.11.001

    CAS  Article  Google Scholar 

  8. Fan P et al (2017) Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr Polym 162:108–114. https://doi.org/10.1016/j.carbpol.2017.01.015

    CAS  Article  PubMed  Google Scholar 

  9. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62. https://doi.org/10.1016/j.cej.2016.10.064

    CAS  Article  Google Scholar 

  10. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–16058. https://doi.org/10.1039/C7TA02070H

    CAS  Article  Google Scholar 

  11. Ibrahim S, Wang S, Ang HM (2010) Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem Eng J 49:78–83. https://doi.org/10.1016/j.bej.2009.11.013

    CAS  Article  Google Scholar 

  12. Li H, Liu L, Yang F (2012) Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull 64:1648–1653. https://doi.org/10.1016/j.marpolbul.2012.05.039

    CAS  Article  PubMed  Google Scholar 

  13. Li B, Liu X, Zhang X, Zou J, Chai W, Lou Y (2015) Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. J Chem Technol Biotechnol 90:2106–2112. https://doi.org/10.1002/jctb.4646

    CAS  Article  Google Scholar 

  14. Loow Y, New EK, Yang GH, Ang LY, Foo LYW, Wu TY (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24:3591–3618. https://doi.org/10.1007/s10570-017-1358-y

    CAS  Article  Google Scholar 

  15. Maiti S, Mishra IM, Bhattacharya SD, Joshi JK (2011) Removal of oil from oil-in-water emulsion using a packed bed of commercial resin. Colloids Surf A 389:291–298. https://doi.org/10.1016/j.colsurfa.2011.07.041

    CAS  Article  Google Scholar 

  16. Misra P, Chitanda JM, Dalai AK, Adjaye J (2016) Selective removal of nitrogen compounds from gas oil using functionalized polymeric adsorbents: efficient approach towards improving denitrogenation of petroleum feedstock. Chem Eng J 295:109–118. https://doi.org/10.1016/j.cej.2016.03.024

    CAS  Article  Google Scholar 

  17. Rafieian F, Hosseini M, Jonoobi M, Yu Q (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25:4695–4710. https://doi.org/10.1007/s10570-018-1867-3

    CAS  Article  Google Scholar 

  18. Rajakovic V, Aleksic G, Radetic M, Rajakovic L (2007) Efficiency of oil removal from real wastewater with different sorbent materials. J Hazard Mater 143:494–499. https://doi.org/10.1016/j.jhazmat.2006.09.060

    CAS  Article  PubMed  Google Scholar 

  19. Shah MS, Tsapatsis M, Siepmann JI, Energy FRCE (2017) Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chem Rev 117:9755–9803. https://doi.org/10.1021/acs.chemrev.7b00095

    CAS  Article  PubMed  Google Scholar 

  20. Shakeri H, Arshadi M, Salvacion JWL (2016) Removal of BTEX by using a surfactant—Bio originated composite. J Colloid Interfaces Sci 466:186–197. https://doi.org/10.1016/j.jcis.2015.12.019

    CAS  Article  Google Scholar 

  21. Shavandi MA, Haddadian Z, Ismail MHS, Abdullah N, Abidin ZZ (2012) Removal of residual oils from palm oil mill effluent by adsorption on natural zeolite water. Air Soil Pollut 223:4017–4027. https://doi.org/10.1007/s11270-012-1169-6

    CAS  Article  Google Scholar 

  22. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    CAS  Article  Google Scholar 

  23. Srinivasan A, Viraraghavan T (2010) Oil removal from water using biomaterials. Bioresource Technol 101:6594–6600. https://doi.org/10.1016/j.biortech.2010.03.079

    CAS  Article  Google Scholar 

  24. Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782. https://doi.org/10.1016/j.cej.2017.07.142

    CAS  Article  Google Scholar 

  25. Teo N, Gu Z, Jana SC (2018) Polyimide-based aerogel foams, via emulsion-templating. Polymer 157:95–102. https://doi.org/10.1016/j.polymer.2018.10.030

    CAS  Article  Google Scholar 

  26. Wang J, Wang H (2018) Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water. J Colloid Interfaces Sci 530:372–382. https://doi.org/10.1016/j.jcis.2018.07.002

    CAS  Article  Google Scholar 

  27. Wang X, Jiang S, Cui S, Tang Y, Pei Z, Duan H (2019) Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu(II). Cellulose 26:5051–5063. https://doi.org/10.1007/s10570-019-02444-7

    CAS  Article  Google Scholar 

  28. Yan J, Hu J, Yang R, Zhao W (2018) A new nanofibrillated and hydrophobic grafted dietary fibre derived from bamboo leaves: enhanced physicochemical properties and real adsorption capacity of oil. Int J Food Sci Technol 53:2394–2404. https://doi.org/10.1111/ijfs.13832

    CAS  Article  Google Scholar 

  29. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025. https://doi.org/10.1021/cm502873c

    CAS  Article  Google Scholar 

  30. Yang J, Xia Y, Xu P, Chen B (2018) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544. https://doi.org/10.1007/s10570-018-1801-8

    CAS  Article  Google Scholar 

  31. Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Micropor Mesopor Mat 169:153–159. https://doi.org/10.1016/j.micromeso.2012.11.002

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Research and Development Project of Jiangsu Province (BE2019734, BE2017151, BE2016171), the Major Program of Natural Science Fund in Colleges and Universities of Jiangsu Province (15KJA430005), the Program of Science and Technology of Suqian City (M201704, H201801, H201803), the National Natural Science Foundation of China (51702156, 81471183), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R35), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Brand Major Program Development of Jiangsu Higher Education Institutions (PPZY2015B128). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of these programs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhong, K., Liu, W. et al. Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose (2020). https://doi.org/10.1007/s10570-020-03309-0

Download citation

Keywords

  • Hydrophobic
  • Oil adsorption
  • Microcrystalline cellulose
  • Aerogel