Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions

Abstract

Lignocellulose nanofibrils (LCNFs) are nano-objects produced in aqueous suspension by industrially adaptable methods, with a high yield, low production cost and the potential to replace or complement delignified cellulose nanofibrils in their current applications. To this end, it is necessary to understand how their constituents affect the production and characteristics of the final product. This review explores the most recent results on the effect of the residual amount of lignin and hemicelluloses on the properties of LCNF suspensions. In the current literature, there is a consensus on hemicelluloses, a larger amount of which favors the mechanical fibrillation process, with mannans providing the greatest benefits. Meanwhile, there is no consensus on the effect of residual lignin on mechanical fibrillation, since it can act as an antioxidant, which promotes fibrillation, or as a cementing agent, which hinders fibrillation and, therefore, the production of LCNFs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

(adapted from Espinosa et al. 2017a)

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    CAS  PubMed  Google Scholar 

  2. Albornoz-Palma G, Betancourt F, Mendonça RT, Chinga-Carrasco G, Pereira M (2020) Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr Polym 230:115588

    PubMed  Google Scholar 

  3. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    CAS  PubMed  Google Scholar 

  4. Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    CAS  Google Scholar 

  5. Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86(3):1198–1206

    CAS  Google Scholar 

  6. Bian H et al (2019) Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency. Bioresour Technol 293:122171

    PubMed  Google Scholar 

  7. Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Poly 167:167–176

    CAS  Google Scholar 

  8. Bian H, Chen L, Gleisner R, Dai H, Zhu JY (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 C using a recyclable acid hydrotrope. Green Chem 19(14):3370–3379

    CAS  Google Scholar 

  9. Bian H, Wei L, Lin C, Ma Q, Dai H, Zhu JY (2018) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6(4):4821–4828

    CAS  Google Scholar 

  10. Borrega M, Orelma H (2019) Cellulose Nanofibril (CNF) Films and xylan from hot water extracted birch kraft pulps. Appl Sci 9(16):3436

    CAS  Google Scholar 

  11. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30

    CAS  PubMed  Google Scholar 

  12. Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20(6):2863–2875

    CAS  Google Scholar 

  13. Chen Y, Fan D, Han Y, Lyu S, Lu Y, Li G, Jiang F, Wang S (2018) Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose 25(11):6421–6431

    CAS  Google Scholar 

  14. Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6(1):417

    PubMed  PubMed Central  Google Scholar 

  15. de Carvalho DM, Moser C, Lindström ME, Sevastyanova O (2019) Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Ind Crops Prod 127:203–211

    CAS  Google Scholar 

  16. Delgado-Aguilar M (2015) Nanotecnología en el sector papelero: mejoras en calidad y permanencia de las fibras de alto rendimiento y secundarias en una economía circular mediante el uso de nanofibras y el refino enzimático. Tesis doctoral. Universitat de Girona, España

  17. Delgado-Aguilar M, González I, Tarrés Q, Pèlach M, Alcalà M, Mutjé P (2016) The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind Crops Prod 86:295–300

    CAS  Google Scholar 

  18. Dimic-Misic K, Maloney T, Gane P (2018) Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in micro and nanofibrillated cellulose aqueous suspensions. Cellulose 25(1):117–136

    CAS  Google Scholar 

  19. Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24(7):3037–3050

    CAS  Google Scholar 

  20. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins––natural antioxidants. Biores Technol 95(3):309–317

    CAS  Google Scholar 

  21. Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Google Scholar 

  22. Dullaert K, Mewis J (2005) Stress jumps on weakly flocculated dispersions: steady state and transient results. J Colloid Interface Sci 287(2):542–551

    CAS  PubMed  Google Scholar 

  23. Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and biotechnology, vol 1. Walter de Gruyter, Berlin

    Google Scholar 

  24. Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86(3):1281–1290

    CAS  Google Scholar 

  25. Espinosa E, Sánchez R, González Z, Domínguez-Robles J, Ferrari B, Rodríguez A (2017a) Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: physicochemical, thermal and rheological characterisation. Carbohydr Polym 175:27–37

    CAS  PubMed  Google Scholar 

  26. Espinosa E, Sánchez R, Otero R, Domínguez-Robles J, Rodríguez A (2017b) A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int J Biol Macromol 103:990–999

    CAS  PubMed  Google Scholar 

  27. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions, vol 1. Walter de Gruyter, Berlin, pp 1960–1982

    Google Scholar 

  28. Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193

    CAS  Google Scholar 

  29. Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan K, Clift M, Cranton E, Eichhorn S, Fox D, Hamad W, Heux K, Jean B, Korey M, Nieh K, Reid M, Renneckar S, Roberts R, Shathin J, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679

    CAS  PubMed  Google Scholar 

  30. García A, Alriols MG, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185

    Google Scholar 

  31. Gregorova A, Košíková B, Staško A (2007) Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene. J Appl Polym Sci 106(3):1626–1631

    CAS  Google Scholar 

  32. Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21(3):1313–1326

    Google Scholar 

  33. Gu L, Jiang B, Song J, Jin Y, Xiao H (2019) Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose 26(2):933–944

    CAS  Google Scholar 

  34. He M, Yang G, Chen J, Ji X, Wang Q (2018) Production and characterization of cellulose nanofibrils from different chemical and mechanical pulps. J Wood Chem Technol 38(2):149–158

    CAS  Google Scholar 

  35. Herzele S, Veigel S, Liebner F, Zimmermann T, Gindl-Altmutter W (2016) Reinforcement of polycaprolactone with microfibrillated lignocellulose. Ind Crops Prod 93:302–308

    CAS  Google Scholar 

  36. Heyn A (1969) The elementary fibril and supermolecular structure of cellulose in soft wood fiber. J Ultrastruct Res 26:52–68

    CAS  PubMed  Google Scholar 

  37. Hoeger IC, Filpponen I, Martin-Sampedro R, Johansson LS, Österberg M, Laine J, Rojas OJ (2012) Bicomponent lignocellulose thin films to study the role of surface lignin in cellulolytic reactions. Biomacromolecules 13(10):3228–3240

    CAS  PubMed  Google Scholar 

  38. Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    CAS  Google Scholar 

  39. Horseman T, Tajvidi M, Diop CI, Gardner DJ (2017) Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose 24(6):2455–2468

    CAS  Google Scholar 

  40. Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation an inherent property of kraft pulps. Polymer 42(8):3309–3314

    CAS  Google Scholar 

  41. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    CAS  Google Scholar 

  42. ISO ISO/TS (2017) 20477:2017 Nanotechnologies—Standard terms and their definition for cellulose nanomaterial. ISO, Geneva

  43. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81(6):1109–1112

    CAS  Google Scholar 

  44. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466

    CAS  Google Scholar 

  45. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022–1026

    CAS  PubMed  Google Scholar 

  46. Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76

    CAS  Google Scholar 

  47. Jiang Y, Liu X, Yang Q, Song X, Qin C, Wang S, Li K (2018) Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 25(11):6479–6494

    CAS  Google Scholar 

  48. Jiang Y, Liu X, Yang Q, Song X, Qin C, Wang S, Li K (2019) Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose 26(3):1577–1593

    Google Scholar 

  49. Jin Z, Katsumata KS, Lam TBT, Iiyama K (2006) Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolym Orig Res Biomol 83(2):103–110

    CAS  Google Scholar 

  50. Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping methods and pulp properties. Biomass 13(1):45–65

    CAS  Google Scholar 

  51. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969

    CAS  Google Scholar 

  52. Karim Z, Afrin S, Husain Q, Danish R (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 37(3):355–370

    CAS  PubMed  Google Scholar 

  53. Kishani S, Vilaplana F, Xu W, Xu C, Wágberg L (2018) Solubility of softwood hemicelluloses. Biomacromol 19(4):1245–1255

    CAS  Google Scholar 

  54. Krishnan JM (2010) Rheology of complex fluids. In: Deshpande AP, Kumar PS (eds). Springer, Berlin

  55. Kumagai A, Endo T (2018) Comparison of the surface constitutions of hemicelluloses on lignocellulosic nanofibers prepared from softwood and hardwood. Cellulose 25(7):3885–3897

    CAS  Google Scholar 

  56. Kumagai A, Lee SH, Endo T (2013) Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromolecules 14(7):2420–2426

    CAS  PubMed  Google Scholar 

  57. Kumagai A, Iwamoto S, Lee SH, Endo T (2014) Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils. Cellulose 21(4):2433–2444

    CAS  Google Scholar 

  58. Kumagai A, Lee SH, Endo T (2016) Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Biotechnol Bioeng 113(7):1441–1447

    CAS  PubMed  Google Scholar 

  59. Lan TQ, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. BioEnergy Res 6(2):476–485

    CAS  Google Scholar 

  60. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    CAS  Google Scholar 

  61. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90(2):735–764

    CAS  PubMed  Google Scholar 

  62. Lê HQ, Dimic-Misic K, Johansson LS, Maloney T, Sixta H (2018) Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose 25(1):179–194

    Google Scholar 

  63. Lindeboom J, Mulder BM, Vos JW, Ketelaar T, Emons AMC (2008) Cellulose microfibril deposition: coordinated activity at the plant plasma membrane. J Microsc 231(2):192–200

    CAS  PubMed  Google Scholar 

  64. Liu H, Sun J, Leu SY, Chen S (2016) Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels Bioprod Biorefin 10(5):648–663

    CAS  Google Scholar 

  65. Ma Q, Zhu J, Gleisner R, Yang R, Zhu JY (2018) Valorization of wheat straw using a recyclable hydrotrope at low temperatures (≤ 90° C). ACS Sustain Chem Eng 6(11):14480–14489

    CAS  Google Scholar 

  66. Mahendra IP, Wirjosentono B, Ismail H, Mendez JA (2019) Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chem 17(1):526–536

    CAS  Google Scholar 

  67. Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ (2013) Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Biomacromolecules 14(4):1231–1239

    PubMed  Google Scholar 

  68. Meier H (1962) Chemical and morphological aspects of the fine structure of wood. Pure Appl Chem 5(1–2):37–52

    CAS  Google Scholar 

  69. Moniruzzaman M, Goto M (2019) Ionic liquid pretreatment of lignocellulosic biomass for enhanced enzymatic delignification. Appl Ion Liq Biotechnol 61–77

  70. Naderi A, Lindström T (2015) Rheological measurements on nanofibrillated cellulose systems: a science in progress. In: Cellulose and cellulose derivatives: synthesis, modification and applications. Nova Science Publishers, New York, pp 187–204

  71. Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150

    CAS  Google Scholar 

  72. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 16(4):2349

    Google Scholar 

  73. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr polymers 112:432–439

    CAS  Google Scholar 

  74. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    CAS  Google Scholar 

  75. Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules 17(7):2311–2320

    CAS  PubMed  Google Scholar 

  76. Nie S, Zhang K, Lin X, Zhang C, Yan D, Liang H, Wang S (2018) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142

    CAS  PubMed  Google Scholar 

  77. Ochoa-Villarreal M, Aispuro-Hernández E, Vargas-Arispuro I, Martínez-Téllez MÁ (2012) Plant cell wall polymers: function, structure and biological activity of their derivatives. In: Polymerization. InTech

  78. Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535

    CAS  Google Scholar 

  79. Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung-Int J Biol Chem Phys Technol Wood 51(4):355–360

    CAS  Google Scholar 

  80. Osong SH, Norgren S, Engstrand P, Lundberg M, Reza M, Tapani V (2016) Qualitative evaluation of microfibrillated cellulose using the crill method and some aspects of microscopy. Cellulose 23(6):3611–3624

    Google Scholar 

  81. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    PubMed  Google Scholar 

  82. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975

    CAS  Google Scholar 

  83. Park CW, Han SY, Namgung HW, Seo PN, Lee SY, Lee SH (2017) Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioResources 12(3):5031–5044

    CAS  Google Scholar 

  84. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568

    CAS  PubMed  Google Scholar 

  85. Pérez J, Munoz-Dorado J, de la Rubia TDLR, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    PubMed  Google Scholar 

  86. Peterlin A, Ingram P (1970) Morphology of secondary wall fibrils in cotton. Text Res J 40(4):345–354

    CAS  Google Scholar 

  87. Pinto PC, Evtuguin DVy, Neto CP (2005) Efecto de las características estructurales de los biopolímeros de madera en el rendimiento de la fabricación de pasta y blanqueo de madera dura. Invest Quím Ind Ing 44(26):9777–9784

    CAS  Google Scholar 

  88. Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gällstedt M, Lindström T, Siró I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117(6):3601–3609

    CAS  Google Scholar 

  89. Postek MT, Moon RJ, Rudie AW, Bilodeau MA (2013) Production and applications of cellulose. Tappi Press, Peachtree Corners

  90. Qin Y, Qiu X, Zhu JY (2016) Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis. Sci Rep 6:35602

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234

    CAS  PubMed  Google Scholar 

  92. Rezaei A, Nasirpour A, Fathi M (2015) Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci Food Saf 14(3):269–284

    CAS  Google Scholar 

  93. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866

    CAS  Google Scholar 

  94. Saarinen T, Lille M, Seppälä J (2009) Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc 17:121–128

    CAS  Google Scholar 

  95. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    CAS  PubMed  Google Scholar 

  96. Santucci BS, Bras J, Belgacem MN, da Silva Curvelo AA, Pimenta MTB (2016) Evaluación de los efectos de la composición química y los tratamientos de refinación sobre las propiedades de las películas de celulosa nanofibriladas del bagazo de caña de azúcar. Cultivos y productos industriales 91:238–248

    CAS  Google Scholar 

  97. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60(13):3615–3635

    CAS  PubMed  Google Scholar 

  98. Seo PN, Han SY, Park CW, Lee SY, Kim NH, Lee SH (2019) Effect of alkaline peroxide treatment on the chemical compositions and characteristics of lignocellulosic nanofibrils. BioResources 14(1):193–206

    CAS  Google Scholar 

  99. Shao Z, Li K (2006) The effect of fiber surface lignin on interfiber bonding. J Wood Chem Technol 26(3):231–244

    CAS  Google Scholar 

  100. Širc J, Hobzová R, Kostina N, Munzarová M, Juklícková M, Lhotka M, Michálek J (2012) Morphological characterization of nanofibers: methods and application in practice. J Nanomater 2012:121

    Google Scholar 

  101. Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  102. Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66(4):477–483

    CAS  Google Scholar 

  103. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968

    CAS  PubMed  Google Scholar 

  104. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    CAS  Google Scholar 

  105. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    CAS  Google Scholar 

  106. Sun XF, Sun RC, Su Y, Sun JX (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52(4):839–847

    CAS  PubMed  Google Scholar 

  107. Sun X, Wu Q, Lee S, Qing Y, Wu Y (2016) Cellulose nanofibers as a modifier for rheology, curing and mechanical performance of oil well cement. Sci Rep 6:31654

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75

    CAS  Google Scholar 

  109. Tagami A, Gioia C, Lauberts M, Budnyak T, Moriana R, Lindström ME, Sevastyanova O (2019) Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: compositional, structural, thermal, antioxidant and adsorption properties. Ind Crops Prod 129:123–134

    CAS  Google Scholar 

  110. Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro-and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238

    CAS  Google Scholar 

  111. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131

    CAS  PubMed  Google Scholar 

  112. Tarrés Q, Ehman NV, Vallejos ME, Area MC, Delgado-Aguilar M, Mutjé P (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27

    PubMed  Google Scholar 

  113. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    CAS  Google Scholar 

  114. Turbak AF, Snyder FW, Sandberg KR (1983) U.S. Patent No. 4,374,702. U.S. Patent and Trademark Office, Washington

  115. Vänskä E, Vihelä T, Peresin MS, Vartiainen J, Hummel M, Vuorinen T (2016) Residual lignin inhibits thermal degradation of cellulosic fiber sheets. Cellulose 23(1):199–212

    Google Scholar 

  116. Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20(4):1885–1896

    CAS  Google Scholar 

  117. Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643

    CAS  Google Scholar 

  118. Wang ZJ, Zhu JY, Zalesny Jr RS, Chen KF (2012b) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95:606–614

    CAS  Google Scholar 

  119. Wang H, Zhang X, Jiang Z, Li W, Yu Y (2015) A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Ind Crops Prod 71:80–88

    CAS  Google Scholar 

  120. Wen Y, Yuan Z, Liu X, Qu J, Yang S, Wang A, Wei B, Xu J, Ni Y (2019) Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization. ACS Sustain Chem Eng 7(6):6131–6139

    CAS  Google Scholar 

  121. Xu J, Fu Y, Tian G, Li Q, Liu N, Qin M, Wang Z (2018) Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent. Bioresour Technol 254:353–356

    CAS  PubMed  Google Scholar 

  122. Zhang J, Choi YS, Yoo CG, Kim TH, Brown RC, Shanks BH (2015) Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3(2):293–301

    Google Scholar 

  123. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Agencia Nacional de Investigación y Desarrollo (ANID)/Doctorado Nacional/2018-21181080 and Agencia Nacional de Investigación y Desarrollo (ANID)/Doctorado Nacional/2019-21190348. Conicyt PIA/Apoyo CCTE AFB 170007.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Pereira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albornoz-Palma, G., Ching, D., Valerio, O. et al. Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose (2020). https://doi.org/10.1007/s10570-020-03304-5

Download citation

Keywords

  • Lignocellulose nanofibrils
  • Lignin
  • Hemicelluloses
  • Fibrillation
  • Cellulose