Comparison of alkali treatments on selected chemical, physical and mechanical properties of grape cane fibers

Abstract

Grape cane is a necessary annual by-product of a vineyard. It is available in large quantities, an estimated 9 million tons (oven-dry weight) annually, having approximately 18 million acres worldwide. There is currently no substantial commercial utilization of grape cane fiber, with the majority incinerated. The main objective of the current study is to characterize grape cane fibers extracted at different alkali treatment concentrations and to determine the optimum treatment concentrations that can produce better fiber properties. The fibers were treated at 1, 3, 5 and 7 wt% of sodium hydroxide (NaOH) at 100 °C for 2 h. The grape cane fibers can be categorized into two types, namely outer bark (OB) and inner bark (IB) fiber after the treatment process. Aspect ratio, chemical composition, crystallinity, changes in the functional groups using FTIR, and tensile properties of OB and IB fibers were investigated. The results show that these two fibers demonstrated dissimilar anatomical structures, cell types, cell dimensions, and tensile properties. Meanwhile, the chemical compositions and crystallinity are equivalent to each other. The overall properties of both fibers were found superior at the lower treatment concentrations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdal-hay A, Suardana NPG, Jung DY et al (2012) Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int J Precis Eng Manuf 13:1199–1206. https://doi.org/10.1007/s12541-012-0159-3

    Article  Google Scholar 

  2. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos B Eng 40:601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    CAS  Article  Google Scholar 

  3. Alma MH, Basturk MA (2006) Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol–formaldehyde type adhesive. Ind Crops Prod 24:171–176. https://doi.org/10.1016/j.indcrop.2006.03.010

    CAS  Article  Google Scholar 

  4. Alves Fidelis ME, Pereira TVC, Gomes O da et al (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2:149–157. https://doi.org/10.1016/j.jmrt.2013.02.003

    CAS  Article  Google Scholar 

  5. Amel BA, Paridah MT, Sudin R et al (2013) Effect of fiber extraction methods on some properties of kenaf bast fiber. Ind Crops Prod 46:117–123. https://doi.org/10.1016/j.indcrop.2012.12.015

    CAS  Article  Google Scholar 

  6. ASTM C1557-14 (2014) Standard test method for tensile strength and Young’s modulus of fibers. America Society for Testing Materials ASTM International, West Conshohocken

    Google Scholar 

  7. ASTM D3800-04 (2004) Test method for density of high-modulus fibers. America Society for Testing Materials ASTM International, West Conshohocken. https://doi.org/10.1520/D3800-99R04

    Google Scholar 

  8. Bakar BF (2019) Characterization of grape cane fibers as a composite reinforcement. Dissertation, Oregon State University

  9. Borchani KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22:1577–1589. https://doi.org/10.1007/s10570-015-0583-5

    CAS  Article  Google Scholar 

  10. Burnard MD, Muszyński L, Leavengood S, Ganio L (2019) Correction to: An optical method for rapid examination of check development in decorative plywood panels. Eur J Wood Prod 77:171–171. https://doi.org/10.1007/s00107-018-1372-2

    Article  Google Scholar 

  11. Cai M, Takagi H, Nakagaito AN et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos A Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    CAS  Article  Google Scholar 

  12. Chen H, Zhang W, Wang X et al (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64:398–405. https://doi.org/10.1007/s10086-018-1713-0

    CAS  Article  Google Scholar 

  13. Chikouche MDL, Merrouche A, Azizi A et al (2015) Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. J Reinf Plast Compos 34:1329–1339. https://doi.org/10.1177/0731684415591093

    CAS  Article  Google Scholar 

  14. Del Rey R, Serrat R, Alba J et al (2017) Effect of sodium hydroxide treatments on the tensile strength and the interphase quality of hemp core fiber-reinforced polypropylene composites. Polymers 9:377. https://doi.org/10.3390/polym9080377

    CAS  Article  PubMed Central  Google Scholar 

  15. Depuydt D, Hendrickx K, Biesmans W et al (2017) Digital image correlation as a strain measurement technique for fibre tensile tests. Compos A Appl Sci Manuf 99:76–83. https://doi.org/10.1016/j.compositesa.2017.03.035

    Article  Google Scholar 

  16. Dong Z, Hou X, Sun F et al (2014) Textile grade long natural cellulose fibers from bark of cotton stalks using steam explosion as a pretreatment. Cellulose 21:3851–3860. https://doi.org/10.1007/s10570-014-0401-5

    CAS  Article  Google Scholar 

  17. Elsakhawy M, Hassan M (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10. https://doi.org/10.1016/j.carbpol.2006.04.009

    CAS  Article  Google Scholar 

  18. Fernandes EM, Aroso IM, Mano JF et al (2014) Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Compos B Eng 67:371–380. https://doi.org/10.1016/j.compositesb.2014.07.028

    CAS  Article  Google Scholar 

  19. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    CAS  Article  Google Scholar 

  20. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    CAS  Article  Google Scholar 

  21. Hashim MY, Amin AM, Marwah OMF et al (2017) The effect of alkali treatment under various conditions on physical properties of kenaf fiber. J Phys Conf Ser 914:012030. https://doi.org/10.1088/1742-6596/914/1/012030

    CAS  Article  Google Scholar 

  22. Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers Polym 13:632–640. https://doi.org/10.1007/s12221-012-0632-8

    CAS  Article  Google Scholar 

  23. Ikramullah RS, Thalib S, Huzni S (2018) Hemicellulose and lignin removal on typha fiber by alkali treatment. IOP Conf Ser Mater Sci Eng 352:012019. https://doi.org/10.1088/1757-899X/352/1/012019

    Article  Google Scholar 

  24. Jeong GY, Kong JH, Lee SJ, Pang S-J (2018) Comparisons of bearing properties for various oriented glulam using digital image correlation. J Wood Sci 64:237–245. https://doi.org/10.1007/s10086-018-1700-5

    CAS  Article  Google Scholar 

  25. Jiménez L, Angulo V, Ramos E et al (2006) Comparison of various pulping processes for producing pulp from vine shoots. Ind Crops Prod 23:122–130. https://doi.org/10.1016/j.indcrop.2005.05.001

    CAS  Article  Google Scholar 

  26. Mahjoub R, Yatim JM, Mohd Sam AR, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036

    Article  Google Scholar 

  27. Mancera C, Mansouri N-EE, Ferrando F, Salvado J (2011) The suitability of steam exploded vitis vinifera and alkaline lignin for the manufacture of fiberboard. BioResources 6:4439–4453

    CAS  Google Scholar 

  28. Manimaran P, Senthamaraikannan P, Sanjay MR et al (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

    CAS  Article  PubMed  Google Scholar 

  29. Mota GS, Sartori CJ, Ferreira J et al (2016) Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado. Ind Crops Prod 90:65–75. https://doi.org/10.1016/j.indcrop.2016.06.014

    CAS  Article  Google Scholar 

  30. Nayeri MD, Tahir PM, Harun J et al (2013) Effects of temperature and time on the morphology pH, and buffering capacity of bast and core kenaf fibres. BioResources 8:1801–1812

    Article  Google Scholar 

  31. Nirmal U, Lau STW, Hashim J (2014) Interfacial adhesion characteristics of kenaf fibres subjected to different polymer matrices and fibre treatments. J Compos 2014:1–12. https://doi.org/10.1155/2014/350737

    Article  Google Scholar 

  32. Norizan MN, Abdan K, Salit MS, Mohamed R (2018) The effect of alkaline treatment on the mechanical properties of treated sugar palm yarn fibre reinforced unsaturated polyester composites reinforced with different fibre loadings of sugar palm fibre. JSM 47:699–705. https://doi.org/10.17576/jsm-2018-4704-07

    CAS  Article  Google Scholar 

  33. Ntalos GA, Grigoriou AH (2002) Characterization and utilisation of vine prunings as a wood substitute for particleboard production. Ind Crops Prod 16:59–68

    Article  Google Scholar 

  34. Ogbonnaya CI, Roy-Macauley H, Nwalozie MC, Annerose DJM (1997) Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Ind Crops Prod 7:9–18. https://doi.org/10.1016/S0926-6690(97)00034-4

    Article  Google Scholar 

  35. OIV (2018) State of the vitiviniculture world market. http://www.oiv.int/public/medias/5958/oiv-state-of-the-vitiviniculture-world-market-april-2018.pdf

  36. Omotoso MA, Owolabi AW (2015) Pulp and paper evaluation of solid wastes from agricultural produce. Int J Chem 7:113

    CAS  Article  Google Scholar 

  37. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016

    CAS  Article  Google Scholar 

  38. Oushabi A, Sair S, Oudrhiri Hassani F et al (2017) The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–polyurethane composite. S Afr J Chem Eng 23:116–123. https://doi.org/10.1016/j.sajce.2017.04.005

    Article  Google Scholar 

  39. Özgenç Ö, Durmaz S, Boyaci IH, Eksi-Kocak H (2017) Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim Acta A Mol Biomol Spectrosc 171:395–400. https://doi.org/10.1016/j.saa.2016.08.026

    CAS  Article  PubMed  Google Scholar 

  40. Pereira H (2007) The chemical composition of cork. In: Cork. Elsevier, pp 55–99

  41. Pereira H (2013) Variability of the chemical composition of cork. BioResources 8:2246–2256. https://doi.org/10.15376/biores.8.2.2246-2256

    CAS  Article  Google Scholar 

  42. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    CAS  Article  Google Scholar 

  43. Poletto M, Ornaghi H, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119. https://doi.org/10.3390/ma7096105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Preethi P, Balakrishna MG (2013) Physical and chemical properties of banana fibre extracted from commercial banana cultivars grown in Tamilnadu state. Agrotechnology. https://doi.org/10.4172/2168-9881.S11-008

    Article  Google Scholar 

  45. Reddy N, Yang Y (2009) Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym Eng Sci 49:2212–2217. https://doi.org/10.1002/pen.21469

    CAS  Article  Google Scholar 

  46. Ridzuan MJM, Majid MSA, Afendi M et al (2015) The effects of the alkaline treatment’s soaking exposure on the tensile strength of napier fibre. Procedia Manuf 2:353–358. https://doi.org/10.1016/j.promfg.2015.07.062

    Article  Google Scholar 

  47. Sadrolhosseini AR, Abdul Rashid S, Zakaria A (2017) Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique. J Nanomater 2017:1–5. https://doi.org/10.1155/2017/6496390

    CAS  Article  Google Scholar 

  48. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos A Appl Sci Manuf 42:888–895. https://doi.org/10.1016/j.compositesa.2011.03.008

    CAS  Article  Google Scholar 

  49. Schwarzkopf M, Muszyński L, Hammerquist CC, Nairn JA (2017) Micromechanics of the internal bond in wood plastic composites: integrating measurement and modeling. Wood Sci Technol 51:997–1014. https://doi.org/10.1007/s00226-017-0934-5

    CAS  Article  Google Scholar 

  50. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  51. Şen A, Quilhó T, Pereira H (2011) The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Ind Crops Prod 34:929–936. https://doi.org/10.1016/j.indcrop.2011.02.015

    Article  Google Scholar 

  52. Silvestri S, Cristoforetti A, Mescalchin E (2011) Recovery of pruning waste for energy use: agronomic, economic and ecological aspects

  53. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802. https://doi.org/10.1177/0021998309338078

    CAS  Article  Google Scholar 

  54. Spinelli R, Nati C, Pari L et al (2012) Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl Energy 89:374–379. https://doi.org/10.1016/j.apenergy.2011.07.049

    Article  Google Scholar 

  55. Strik BC (2011) Growing table grapes. Oregon State University, Extension Service, Corvallis, OR

  56. Suryanto H, Marsyahyo E, Irawan YS, Soenoko R (2013) Effect of alkali treatment on crystalline structure of cellulose fiber from Mendong (Fimbristylis globulosa) straw. KEM 594–595:720–724. https://doi.org/10.4028/www.scientific.net/KEM.594-595.720

    Article  Google Scholar 

  57. TAPPI 203-99 (1999) Alpha, beta, and gamma cellulose in pulp. Committee of the Chemical of the Process and Product Quality Division, Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  58. TAPPI 204-17 (2017) Solvent extractives of wood and pulp. Committee of the Chemical of the Process and Product Quality Division, Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  59. TAPPI 222-98 (1998). Acid-insoluble lignin in wood and pulp. Committee of the Chemical of the Process and Product Quality Division, Technical Association of the Pulp and Paper Industry (TAPPI), Atlanta

    Google Scholar 

  60. Vardhini KJV, Murugan R, Selvi CT, Surjit R (2016) Optimisation of alkali treatment of banana fibres on lignin removal. Indian J Fibre Text Res 5:156–160

    Google Scholar 

  61. Vecino X, Devesa-Rey R, Moldes AB, Cruz JM (2014) Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere 111:24–31. https://doi.org/10.1016/j.chemosphere.2014.03.004

    CAS  Article  PubMed  Google Scholar 

  62. Vedernikov DN, Shabanova NY, Roshchin VI (2011) Change in the chemical composition of the crust and inner bark of the Betula pendula roth. Birch (Betulaceae) with tree height. Russ J Bioorg Chem 37:877–882. https://doi.org/10.1134/S1068162011070259

    CAS  Article  Google Scholar 

  63. Velázquez-Martí B, Fernández-González E, López-Cortés I, Salazar-Hernández DM (2011) Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass Bioenergy 35:3453–3464. https://doi.org/10.1016/j.biombioe.2011.04.009

    Article  Google Scholar 

  64. Wine Institute (2014) World vineyard acreage by country 2014. Trade data and analysis. https://www.wineinstitute.org/resources/statistics

  65. Wise LE, Murphy M, Daddieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. tappi 29:210–218

    Google Scholar 

  66. Xie J, Hse C-Y, De Hoop CF et al (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr Polym 151:725–734. https://doi.org/10.1016/j.carbpol.2016.06.011

    CAS  Article  PubMed  Google Scholar 

  67. Yasar S, Guntekin E, Cengiz M, Tanriverdi H (2010) The correlation of chemical characteristics and UF-resin ratios to physical and mechanical properties of particleboard manufactured from vine prunings. Sci Res Essays 5:737–741

    Google Scholar 

  68. Yeniocak M, Göktaş O, Erdil YZ et al (2014) Investigating the use of vine pruning stalks (Vitis Vinifera L. CV. Sultani) as raw material for particleboard manufacturing. Wood Res 59:167–176

    CAS  Google Scholar 

  69. Yzombard A, Gordon SG, Miao M (2014a) Morphology and tensile properties of bast fibers extracted from cotton stalks. Text Res J 84:303–311. https://doi.org/10.1177/0040517513495949

    CAS  Article  Google Scholar 

  70. Zhao J, Zhao D (2013) Investigation of strain measurements using digital image correlation with a finite element method. J Opt Soc Korea 17:399–404. https://doi.org/10.3807/JOSK.2013.17.5.399

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author is thankful to Ministry of Education of Malaysia and Universiti Putra Malaysia for the graduate program sponsorships. The authors are grateful to Dirk Wallace and Vincent Cantwell for supplying the grape cane material for this project.

Author information

Affiliations

Authors

Contributions

All authors contributed to the idea and experimental design of this study. BB performed the experiments and wrote the manuscript with support from Fred Kamke.

Corresponding author

Correspondence to Balkis F. A. Bakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakar, B.F.A., Kamke, F.A. Comparison of alkali treatments on selected chemical, physical and mechanical properties of grape cane fibers. Cellulose (2020). https://doi.org/10.1007/s10570-020-03299-z

Download citation

Keywords

  • Alkali treatment
  • Agricultural waste
  • Grape cane
  • Crystallinity
  • Single fiber bundle tensile test
  • Digital image correlation