Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel

Abstract

Cellulose nanofiber (CNF)/zinc borate (ZB) aerogels were successfully prepared via a facile and simple freeze-drying method. The thermal and combustion behavior of synthesized CNF aerogels and CNF/ZB aerogels were systematically investigated via various experimental techniques, including TGA-DTG analysis, micro-scale combustion calorimetry, cone calorimeter, etc. It was known that the CNF aerogels mainly undergo smoldering combustion. The flame retardancy of CNF aerogels was observed remarkably improved with the introduction of ZB, where the formed carbon layer at the sample surface can prevent heat penetration. It was known from micro-scale calorimeter (MCC) test that the burning of CNF/ZB could not last over 20 s, where peak heat release rate and total heat release decrease by 35.1% and 16.3%, respectively, after 2 wt% ZB was added. Meanwhile, the presence of ZB did not affect the porous structure of CNF, which can be proved by the slightly increased thermal conductivity from 0.0276 to 0.0298 W/m K. Flame retardancy of ZB shows its advantages for cellulose aerogels as the improved flame retardancy by ZB will not compromise its original thermal insulation function. The research outcomes of this study provide a new insight for the flame retardancy of cellulose aerogels.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisová-Rychlá L, Carfagna CJB (2008) Morphological and thermal properties of cellulose—montmorillonite nanocomposites. Biomacromol 9:3004–3013

    CAS  Article  Google Scholar 

  2. Donius AE, Liu AD, Berglund LA, Wegst UGK (2014) Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting. J Mech Behav Biomed Mater 37:88–99. https://doi.org/10.1016/j.jmbbm.2014.05.012

    CAS  Article  PubMed  Google Scholar 

  3. Fan BT, Chen SJ, Yao QF, Sun QF, Jin CD (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10:10. https://doi.org/10.3390/ma10030311

    CAS  Article  Google Scholar 

  4. Feng C, Zhang Y, Liang D, Liu S, Chi Z, Xu J (2015) Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites. J Anal Appl Pyrol 115:224–232. https://doi.org/10.1016/j.jaap.2015.07.019

    CAS  Article  Google Scholar 

  5. Guo LM, Chen ZL, Lyu SY, Fu F, Wang SQ (2018) Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydr Polym 179:333–340. https://doi.org/10.1016/j.carbpol.2017.09.084

    CAS  Article  PubMed  Google Scholar 

  6. Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame Retardant Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain Chem Eng 3:1853–1859. https://doi.org/10.1021/acssuschemeng.5b00438

    CAS  Article  Google Scholar 

  7. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393. https://doi.org/10.1002/anie.200460587

    CAS  Article  Google Scholar 

  8. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem-Int Edit 53:10394–10397. https://doi.org/10.1002/anie.201405123

    CAS  Article  Google Scholar 

  9. Liebner F et al (2010) Aerogels from unaltered bacterial cellulose: application of scCO(2) drying for the preparation of shaped ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352. https://doi.org/10.1002/mabi.200900371

    CAS  Article  PubMed  Google Scholar 

  10. Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. https://doi.org/10.1021/bm061215p

    CAS  Article  Google Scholar 

  11. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266. https://doi.org/10.1021/cr0101306

    CAS  Article  PubMed  Google Scholar 

  12. Ren WJ, Gao JK, Lei C, Xie YB, Cai YR, Ni QQ, Yao JM (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774. https://doi.org/10.1016/j.cej.2018.05.143

    CAS  Article  Google Scholar 

  13. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989. https://doi.org/10.1021/bm0497769

    CAS  Article  Google Scholar 

  14. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s

    CAS  Article  Google Scholar 

  15. Song J et al (2018) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12:140–147. https://doi.org/10.1021/acsnano.7b04246

    CAS  Article  PubMed  Google Scholar 

  16. Tengku Izhar TN, Jiat CC, Lutpi NA (2015) A Study of Fire Retardant Effect in Natural Fiber Composite Panels with Magnesium Hydroxide and Zinc Borate as Additives. Appl Mech Mater (Switzerland) 815:148–152. https://doi.org/10.4028/www.scientific.net/AMM.815.148

    Article  Google Scholar 

  17. Wan JQ, Zhang JM, Yu J, Zhang J (2017) h Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries. ACS Appl Mater Interfaces 9:24591–24599. https://doi.org/10.1021/acsami.7b06271

    CAS  Article  PubMed  Google Scholar 

  18. Wang L, Sanchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5:31384–31391. https://doi.org/10.1039/c5ra02981c

    CAS  Article  Google Scholar 

  19. Wang X et al (2019) Aerogel perfusion-prepared h-BN/CNF composite film with multiple thermally conductive pathways and high thermal conductivity. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano9071051

    Article  PubMed Central  Google Scholar 

  20. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2014) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277. 10.1038/nnano.2014.248. https://www.nature.com/articles/nnano.2014.248#supplementary-information

  21. Xiao SY, Wang FX, Yang YQ, Chang Z, Wu YP (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76

    CAS  Article  Google Scholar 

  22. Yan L, Xu ZS, Wang XH (2019) Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates. J Therm Anal Calorim 136:1563–1574. https://doi.org/10.1007/s10973-018-7819-1

    CAS  Article  Google Scholar 

  23. Yuan B, Zhang JM, Yu J, Song R, Mi QY, He JS, Zhang J (2016) Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci China Chem 59:1335–1341. https://doi.org/10.1007/s11426-016-0188-0

    CAS  Article  Google Scholar 

  24. Yuan B, Zhang J, Mi Q, Yu J, Song R, Zhang J (2017) Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process. ACS Sustain Chem Eng 5:11117–11123. https://doi.org/10.1021/acssuschemeng.7b03211

    CAS  Article  Google Scholar 

  25. Zhang HY et al (2019) Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J Colloid Interface Sci 536:245–251. https://doi.org/10.1016/j.jcis.2018.10.038

    CAS  Article  PubMed  Google Scholar 

  26. Zhao J, Yin Z, Usman Shahid M, Xing H, Cheng X, Fu Y, Lu S (2019) Superhydrophobic and oleophobic ultra-fine dry chemical agent with higher chemical activity and longer fire-protection. J Hazard Mater 380:120625. https://doi.org/10.1016/j.jhazmat.2019.05.018

    CAS  Article  PubMed  Google Scholar 

  27. Zhou T, Cheng XD, Pan YL, Li CC, Gong LL (2019) Mechanical performance and thermal stability of polyvinyl alcohol-cellulose aerogels by freeze drying. Cellulose 26:1747–1755. https://doi.org/10.1007/s10570-018-2179-3

    CAS  Article  Google Scholar 

  28. Zou B et al (2019) Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J Hazard Mater 383:121069. https://doi.org/10.1016/j.jhazmat.2019.121069

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China (No. 2018YFC0807600), Fundamental Research Funds for the Central Universities (Grant No. WK2320000044) and USTC Research Funds of the Double First-Class Initiative (No. YD2320002002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lunlun Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhu, S., Pan, Y. et al. Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel. Cellulose (2020). https://doi.org/10.1007/s10570-020-03289-1

Download citation

Keywords

  • Cellulose nanofibers
  • Zinc borate
  • Aerogel
  • Fire retardant
  • Thermal behaviors