Gas responsive cellulose fibers for capturing and releasing of dyes and proteins from water by packing a smart separation column

Abstract

Separation of dyes and proteins from water remains a significant challenge. Common absorbents without recyclability might bring secondary pollutions, which may be avoided by developing stimuli-responsive smart absorbents. Here in this work, a CO2-responsive polymer poly(2-(dimethylamino) ethyl methacrylate) was grafted from cellulose fibers (Cell-g-PDEA). The chemical structure and surface morphology were confirmed with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and scanning electron microscope. The CO2-sensitivity was demonstrated by monitoring the pH, surface Zeta potential and dispersed appearance under stimulus of CO2. Furthermore, the modified cellulose fibers were packed into a syringe to construct a smart separation column that reversibly captured and released anionic dyes and proteins from water under gas stimulus. Comparing with traditional pH or temperature responsive materials, the CO2-responsive cellulose fibers take the advantages on energy-saving, good reversibility and moderate running conditions, thus might find applications in smart separations, clinical diagnose and therapies.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Cai Z, Xiong P, Zhu C, Zhai T, Guo J, Zhao K (2018) Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal. Cellulose 25(9):5123–5137

    Article  Google Scholar 

  2. Campano C, Lopez-Exposito P, Blanco A, Negro C, van de Ven TGM (2019) Hairy cationic nanocrystalline cellulose as retention additive in recycled paper. Cellulose 26(10):6275–6289

    CAS  Article  Google Scholar 

  3. Cheng C-C, Chiu T-W, Yang X-J, Huang S-Y, Fan W-L, Lai J-Y, Lee D-J (2019) Self-assembling supramolecular polymer membranes for highly effective filtration of water-soluble fluorescent dyes. Polym Chem 10(7):827–834

    CAS  Article  Google Scholar 

  4. Cheng L, Jiang Y, Yan N, Shan S-F, Liu X-Q, Sun L-B (2016) Smart adsorbents with photoregulated molecular gates for both selective adsorption and efficient regeneration. ACS Appl Mater Interfaces 8(35):23404–23411

    CAS  Article  Google Scholar 

  5. Chia CH, Zakaria S, Nguyen KL, Abdullah M (2008) Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Ind Crops Prod 28(3):333–339

    CAS  Article  Google Scholar 

  6. Chung J, Kim J-O (2011) Application of advanced oxidation processes to remove refractory compounds from dye wastewater. Desalination Water Treat 25(1–3):233–240

    CAS  Article  Google Scholar 

  7. Darabi A, Jessop PG, Cunningham MF (2016) CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem Soc Rev 45(15):4391–4436

    CAS  Article  Google Scholar 

  8. Fabri-Faja N, Calvo-Lozano O, Dey P, Terborg RA, Estevez MC, Belushkin A et al (2019) Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Anal Chim Acta 1077:232–242

    CAS  Article  Google Scholar 

  9. Gardebjer S, Bergstrand A, Idstrom A, Borstell C, Naana S, Nordstierna L, Larsson A (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9

    Article  Google Scholar 

  10. Guo J, Wang N, Wu J, Ye Q, Zhang C, Xing X-H, Yuan J (2014) Hybrid nanoparticles with CO2-responsive shells and fluorescence-labelled magnetic cores. J Mater Chem B B 2(4):437–442

    CAS  Article  Google Scholar 

  11. Guo Z, Chen Q, Gu H, He Z, Xu W, Zhang J et al (2018) Giant microgels with CO2-induced on–off, selective, and recyclable adsorption for anionic dyes. ACS Appl Mater Interfaces 10(44):38073–38083

    CAS  Article  Google Scholar 

  12. Gupta AD, Pandey S, Jaiswal VK, Bhadauria V, Singh H (2019) Simultaneous oxidation and esterification of cellulose for use in treatment of water containing Cu(II) ions. Carbohydr Polym 222:114964

  13. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542

    CAS  Article  Google Scholar 

  14. Han H, Rafiq MK, Zhou T, Xu R, Masek O, Li X (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796

    CAS  Article  Google Scholar 

  15. Huang Z, Huang Z, Feng L, Luo X, Wu P, Cui L, Mao X (2018) Modified cellulose by polyethyleneimine and ethylenediamine with induced Cu(II) and Pb(II) adsorption potentialities. Carbohydr Polym 202:470–478

    CAS  Article  Google Scholar 

  16. Jiang Y, Shan S-F, Liu W, Zhu J, He Q-X, Tan P et al (2017) Rational design of thermo-responsive adsorbents: demand-oriented active sites for the adsorption of dyes. Chem Commun 53(69):9538–9541

    CAS  Article  Google Scholar 

  17. Jiang Y, Tan P, Kang Y-H, Xing Z-M, Cheng L, Zhu L et al (2016) Fabrication of adsorbents with thermocontrolled molecular gates for both selective adsorption and efficient regeneration. Adv Mater Interfaces 3(11):1500829

  18. Kumar S, Tong X, Dory YL, Lepage M, Zhao Y (2013) A CO2-switchable polymer brush for reversible capture and release of proteins. Chem Commun 49(1):90–92

    CAS  Article  Google Scholar 

  19. Lin S, Shang J, Theato P (2018) Facile fabrication of CO2-responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers. Acs Macro Lett 7(4):431–436

    CAS  Article  Google Scholar 

  20. Lin S, Theato P (2013) CO2-responsive polymers. Macromol Rapid Commun 34(14):1118–1133

    CAS  Article  Google Scholar 

  21. Liu B, Zheng H, Wang Y, Chen X, Zhao C, An Y, Tang X (2018) A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal. Sci Total Environ 640:107–115

    Article  Google Scholar 

  22. Liu H, Guo Z, He S, Yin H, Fei C, Feng Y (2014) CO2-driven vesicle to micelle regulation of amphiphilic copolymer: random versus block strategy. Polym Chem 5(16):4756–4763

    CAS  Article  Google Scholar 

  23. Liu H, Lin S, Feng Y, Theato P (2017) CO2-responsive polymer materials. Polym Chem 8(1):12–23

    Article  Google Scholar 

  24. Makhado E, Pandey S, Ramontja J (2019) Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: an efficient adsorption of hexavalent chromium. Carbohydr Polym 222:114989

  25. Molinero-Fernandez A, Moreno-Guzman M, Arruza L, Angel Lopez M, Escarpa A (2019) Toward early diagnosis of late-onset sepsis in preterm neonates: dual magnetoimmunosensor for simultaneous procalcitonin and C-reactive protein determination in diagnosed clinical samples. ACS Sens 4(8):2117–2123

    CAS  Article  Google Scholar 

  26. Qin Y, Wang L, Zhao C, Chen D, Ma Y, Yang W (2016) Ammonium-functionalized hollow polymer particles as a pH-responsive adsorbent for selective removal of acid dye. ACS Appl Mater Interfaces 8(26):16690–16698

    CAS  Article  Google Scholar 

  27. Qiu J, Wang H, Du Z, Cheng X, Liu Y, Wang H (2018) Preparation of polyacrylamide via dispersion polymerization with gelatin as a stabilizer and its synergistic effect on organic dye flocculation. J Appl Polym Sci 135(21):46298

  28. Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4(5):2517–2527

    CAS  Article  Google Scholar 

  29. Sun W, Wen Y, Thiramanas R, Chen M, Han J, Gong N et al (2018) Red-light-controlled release of drug–Ru complex conjugates from metallopolymer micelles for phototherapy in hypoxic tumor environments. Adv Funct Mater 28(39):1804227

  30. Thombare N, Jha U, Mishra S, Siddiqui MZ (2017) Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr Polym 168:274–281

    CAS  Article  Google Scholar 

  31. Upadhyay A, Rao CP (2019) Porous, pH-responsive, and reusable hydrogel beads of bovine serum albumin_Au hybrid as smart nanofactories for the removal of organic and inorganic pollutants from water: a detailed demonstration by spectroscopy and microscopy. ACS Appl Mater Interfaces 11(8):7965–7973

    CAS  Article  Google Scholar 

  32. Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194

    CAS  Article  Google Scholar 

  33. Wang Y, Cai H, Qian F, Li Y, Yu J, Yang X et al (2019) Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance. J Colloid Interface Sci 533:47–58

    CAS  Article  Google Scholar 

  34. Wang Z, Huang W, Yang G, Liu Y, Liu S (2019) Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydr Polym 215:179–188

    CAS  Article  Google Scholar 

  35. Xing Y, Cheng J, Zhang M, Zhao M, Ye L, Pan W (2018) A novel inorganic Ni–La2O3 composite with superfast and versatile water purification behavior. ACS Appl Mater Interfaces 10(50):43723–43729

    CAS  Article  Google Scholar 

  36. Zhang J, Liu Z, Ma Z (2019) Facile formation of Bi2O2CO3/Bi2MoO6 nanosheets for visible light-driven photocatalysis. ACS Omega 4(2):3871–3880

    CAS  Article  Google Scholar 

  37. Zhang Q, Cao Y, Liu N, Zhang W, Chen Y, Lin X et al (2016) A facile approach for fabricating dual-function membrane: simultaneously removing oil from water and adsorbing water-soluble proteins. Adv Mater Interfaces 3(16):1600291

  38. Zhou H, Yan B, Lai J, Liu H, Ma A, Chen W et al (2018) Renewable biomass derived hierarchically porous carbonaceous sponges and their magnetic nanocomposites for removal of organic molecules from water. J Ind Eng Chem 58:334–342

    CAS  Article  Google Scholar 

  39. Zhu J, Ding J-J, Liu X-Q, Tan P, Sun L-B (2016) Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates. Chem Commun 52(21):4006–4009

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21805178; 21805177), Chinese Postdoctoral Science Foundation (2019M653734), Natural Science Basic Research Plan in Shaanxi Province (Nos. 2018JQ5104, 2019JM-124), Foundation for Selected Oversea Chinese Scholar in Shaanxi Province (No. 2017016), Open Project Program of National Demonstration Center for Experimental Light Chemistry Engineering Education (Grant No. 2018QGSJ02-17) and the advanced research fund of SUST (2016GBJ-14, BJ15-14).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hanbin Liu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, X., Wang, J. et al. Gas responsive cellulose fibers for capturing and releasing of dyes and proteins from water by packing a smart separation column. Cellulose (2020). https://doi.org/10.1007/s10570-020-03277-5

Download citation

Keywords

  • Cellulose
  • Stimuli-responsive
  • Separation
  • Dyes
  • Proteins