Cooperative interaction of sodium and chlorine ions with β-cellobiose in aqueous solution from quantum mechanics and molecular dynamics

Abstract

Cellobiose is usually preferred as model compound of cellulose to explore its conversion mechanism, in which the first challenge is to acquire the molecular solvation mechanism. The interactions of β-cellobiose with the hydrated Na+ cation and Cl anion in aqueous solution have been theoretically investigated, using quantum chemical calculations at LC-ωPBE/6-311++G(d,p), aug-cc-pVTZ level under a polarized continuum model (PCM-SMD), together with molecular dynamics stimulation. In aqueous solution, the most stable form of β-cellobiose is syn-ϕ/syn-φ (CB2), including the exocylcic hydroxyl groups and three intramolecular H-bonds. The favorite solvation structure of NaCl is concerned with [Na(H2O)3]+···Cl ion pair. The Cl anion interacts with β-cellobiose, favorably affording \([\eta_{{\text{H}}6,{\text{H}}2^{\prime}}^2{-}{\text{CB}}2){\text{Cl}}{]^- }\) and \([\eta_{{\text{H}}3^{\prime},{\text{H}}4^{\prime}}^2{-}{\text{CB}}2){\text{Cl}}{]^- }\) with a bridge of OH···Cl···HO interaction. Alternatively, the [Na(H2O)3]+ cation interacts with β-cellobiose, preferably yielding \([\eta_{{\text{O}}3,{\text{O}}5^{\prime},{\text{O}}6^{\prime}}^3{-}{\text{CB}}2){\text{Na}}{]^+ }\). Additionally, the [Na(H2O)3]+···Cl ion-pair interacts cooperatively with β-cellobiose, preferentially producing \([\eta_{{\text{O}}3,{\text{O}}5^{\prime},{\text{O}}6^{\prime},{\text{H}}6,{\text{H}}2^{\prime}}^3{-}{\text{CB}}2){\text{Na}}{\left( {{{\text{H}}_2}{\text{O}}} \right)_1}]{\text{Cl}}\). For CB2, the reactive sites for the nucleophilic and electrophilic reactions locate at the O5 atom on the reducing end and the H6′ atom on the non-reducing end, respectively. Alternatively, for \([\eta_{{\text{O}}3,{\text{O}}5^{\prime},{\text{O}}6^{\prime},{\text{H}}6,{\text{H}}2^{\prime}}^3{-}{\text{CB}}2){\text{Na}}{\left( {{{\text{H}}_2}{\text{O}}} \right)_1}]{\text{Cl}}\), the O5 and H6′ atoms should no longer be characteristic of nucleophilicity and electrophilicity. Moreover, [Na(H2O)3]+···Cl ion-pair can break some intramolecular H-bonds of CB2, which may promote the solvation of β-cellobiose in aqueous solution. It also shields the glycosidic bond by steric effect, which make CB2 not readily hydrated at the glycosidic bond. These functions would alter the reaction pathway in the further degradation of β-cellobiose. This study may advance on the novel design for sustainable conversion system of cellulose into high-added value chemicals.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Azam SS, Hofer TS, Randolf BR, Rode BM (2009) Hydration of sodium(i) and potassium(i) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. J Phys Chem A 113:1827–1834. https://doi.org/10.1021/jp8093462

    CAS  Article  PubMed  Google Scholar 

  2. Azofra LM, Alkorta I, Elguero J (2013) Theoretical study of the mutarotation of erythrose and threose: acid catalysis. Carbohydr Res 372:1–8. https://doi.org/10.1016/j.carres.2013.01.013

    CAS  Article  PubMed  Google Scholar 

  3. Bauernschmitt R, Ahlrichs R (1996) Stability analysis for solutions of the closed shell Kohn-Sham equation. J Chem Phys 104:9047–9052. https://doi.org/10.1063/1.471637

    CAS  Article  Google Scholar 

  4. Boutegrabet L, Kanawati B, Gebefügi I, Peyron D, Cayot P, Gougeon RD, Schmitt-Kopplin P (2012) Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers. Chem Eur J 18:13059–13067. https://doi.org/10.1002/chem.201103788

    CAS  Article  PubMed  Google Scholar 

  5. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    CAS  Article  Google Scholar 

  6. Cesar Beuchat DH, Spezia Riccardo, Gagliardi Laura (2010) Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study. J Phys Chem B 114:15590–15597. https://doi.org/10.1021/jp105590h

    CAS  Article  PubMed  Google Scholar 

  7. Chundawat SPS et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174. https://doi.org/10.1021/ja2011115

    CAS  Article  PubMed  Google Scholar 

  8. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54. https://doi.org/10.1063/1.1480445

    CAS  Article  Google Scholar 

  9. Csonka GI, French AD, Johnson GP, Stortz CA (2009) Evaluation of density functionals and basis sets for carbohydrates. J Chem Theory Comput 5:679–692. https://doi.org/10.1021/ct8004479

    CAS  Article  PubMed  Google Scholar 

  10. Cummings S, Enderby JE, Neilson GW, Newsome JR, Howe RA, Howells WS, Soper AK (1980) Chloride ions in aqueous solutions. Nature 287:714–716. https://doi.org/10.1038/287714a0

    CAS  Article  Google Scholar 

  11. de Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J Chem Phys 114:48–53. https://doi.org/10.1063/1.1329891

    Article  Google Scholar 

  12. Deleeuw SW, Perram JW, Smith ER (1983) Simulation of electrostatic systems in periodic boundary-conditions. 3. Further theory and applications. Proc R Soc Lond Ser A Math Phys Eng Sci 388:177–193. https://doi.org/10.1098/rspa.1983.0077

    Article  Google Scholar 

  13. Deshpande MD, Scheicher RH, Ahuja R, Pandey R (2008) Binding strength of sodium ions in cellulose for different water contents. J Phys Chem B 112:8985–8989. https://doi.org/10.1021/jp8020547

    CAS  Article  PubMed  Google Scholar 

  14. Domingo LR, Saez JA (2009) Understanding the mechanism of polar Diels-Alder reactions. Org Biomol Chem 7:3576–3583. https://doi.org/10.1039/b909611f

    CAS  Article  PubMed  Google Scholar 

  15. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494. https://doi.org/10.1039/c2ra22886f

    CAS  Article  Google Scholar 

  16. Egal M, Budtova T, Navard P (2007) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370. https://doi.org/10.1007/s10570-007-9185-1

    CAS  Article  Google Scholar 

  17. French AD, Johnson GP, Cramer CJ, Csonka GI (2012) Conformational analysis of cellobiose by electronic structure theories. Carbohyd Res 350:68–76. https://doi.org/10.1016/j.carres.2011.12.023

    CAS  Article  Google Scholar 

  18. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09. revision C01 Gaussian, Inc., Wallingford, CT

  19. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341. https://doi.org/10.1080/0892702031000104887

    CAS  Article  Google Scholar 

  20. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/c1cs15147a

    CAS  Article  PubMed  Google Scholar 

  21. Ge L, Bernasconi L, Hunt P (2013) Linking electronic and molecular structure: insight into aqueous chloride solvation. Phys Chem Chem Phys 15:13169–13183. https://doi.org/10.1039/c3cp50652e

    CAS  Article  PubMed  Google Scholar 

  22. Hatcher E, Säwén E, Widmalm G, MacKerell AD (2011) Conformational properties of methyl β-maltoside and methyl α- and β-cellobioside disaccharides. J Phys Chem B 115:597–608. https://doi.org/10.1021/jp109475p

    CAS  Article  PubMed  Google Scholar 

  23. Hawley SA et al (2016) The Na+/glucose co-transporter inhibitor canagliflozin activates AMP-activated protein kinase by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65:2784–2794. https://doi.org/10.2337/db16-0058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Heaton AL, Armentrout PB (2008) Experimental and theoretical studies of sodium cation interactions with d-arabinose, xylose, glucose, and galactose. J Phys Chem A 112:10156–10167. https://doi.org/10.1021/jp804113q

    CAS  Article  PubMed  Google Scholar 

  25. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    CAS  Article  Google Scholar 

  26. Hou GL, Liu CW, Li RZ, Xu HG, Gao YQ, Zheng WJ (2017) Emergence of solvent-separated Na(+)–Cl(–) ion pair in salt water: photoelectron spectroscopy and theoretical calculations. J Phys Chem Lett 8:13–20. https://doi.org/10.1021/acs.jpclett.6b02670

    CAS  Article  PubMed  Google Scholar 

  27. Ikeda T, Boero M, Terakura K (2007) Hydration of alkali ions from first principles molecular dynamics revisited. J Chem Phys 126:034501–034509. https://doi.org/10.1063/1.2424710

    CAS  Article  PubMed  Google Scholar 

  28. Jarvis M (2003) Cellulose stacks up. Nature 426:611–612. https://doi.org/10.1038/426611a

    CAS  Article  PubMed  Google Scholar 

  29. Jiang Z et al (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257. https://doi.org/10.1021/jp501408e

    CAS  Article  PubMed  Google Scholar 

  30. Jiang Z, Yi J, Li J, He T, Hu C (2015) Promoting effect of sodium chloride on the solubilization and depolymerization of cellulose from raw biomass materials in water. Chemsuschem 8:1901–1907. https://doi.org/10.1002/cssc.201500158

    CAS  Article  PubMed  Google Scholar 

  31. Jiang Z et al (2017) Dissolution and metastable solution of cellulose in NaOH/Thiourea at 8 degrees C for construction of nanofibers. J Phys Chem B 121:1793–1801. https://doi.org/10.1021/acs.jpcb.6b10829

    CAS  Article  PubMed  Google Scholar 

  32. Jiang Z, Zhao P, Li J, Liu X, Hu C (2018) Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System. Chemsuschem 11:397–405. https://doi.org/10.1002/cssc.201701861

    CAS  Article  PubMed  Google Scholar 

  33. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    CAS  Article  Google Scholar 

  35. Kemp DD, Gordon MS (2005) Theoretical study of the solvation of fluorine and chlorine anions by water. J Phys Chem A 109:7688–7699. https://doi.org/10.1021/jp058086b

    CAS  Article  PubMed  Google Scholar 

  36. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    CAS  Article  Google Scholar 

  37. Li J, Jiang Z, Hu L, Hu C (2014) Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. Chemsuschem 7:2482–2488. https://doi.org/10.1002/cssc.201402384

    CAS  Article  PubMed  Google Scholar 

  38. Liu L, Jaramillo-Botero A, Goddard WA, Sun H (2012) Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. J Phys Chem A 116:3918–3925. https://doi.org/10.1021/jp210135j

    CAS  Article  PubMed  Google Scholar 

  39. Liu W, Mu W, Liu M, Zhang X, Cai H, Deng Y (2014) Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier. Nat Commun. https://doi.org/10.1038/ncomms4208

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Z et al (2015) Effects of additives on dissolution of cellobiose in aqueous solvents. Cellulose 22:1641–1652. https://doi.org/10.1007/s10570-015-0627-x

    CAS  Article  Google Scholar 

  41. Liu Z, Zhang C, Liu R, Zhang W, Kang H, Li P, Huang Y (2016) Dissolution of cellobiose in the aqueous solutions of chloride salts: hofmeister series consideration. Cellulose 23:295–305. https://doi.org/10.1007/s10570-015-0827-4

    CAS  Article  Google Scholar 

  42. Loerbroks C, Rinaldi R, Thiel W (2013) The electronic nature of the 1,4-beta-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem Eur J 19:16282–16294. https://doi.org/10.1002/chem.201301366

    CAS  Article  PubMed  Google Scholar 

  43. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    CAS  Article  PubMed  Google Scholar 

  44. Lu F et al (2017) Cellobiose as a model compound for cellulose to study the interactions in cellulose/lithium chloride/N-methyl-2-pyrrolidone systems. Cellulose 24:1621–1629. https://doi.org/10.1007/s10570-017-1213-1

    CAS  Article  Google Scholar 

  45. Luo Y, Li Z, Zuo Y, Su Z, Hu C (2017) A simple two-step method for the selective conversion of hemicellulose in pubescens to furfural. ACS Sustain Chem Eng 5:8137–8147. https://doi.org/10.1021/acssuschemeng.7b01766

    CAS  Article  Google Scholar 

  46. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B 111:13570–13577. https://doi.org/10.1021/jp075913v

    CAS  Article  PubMed  Google Scholar 

  47. Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. Green Chem 12:1739–1746. https://doi.org/10.1039/b927424c

    CAS  Article  Google Scholar 

  48. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    CAS  Article  PubMed  Google Scholar 

  49. Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166. https://doi.org/10.1021/jp1106839

    CAS  Article  PubMed  Google Scholar 

  50. Mayes HB, Broadbelt LJ (2012) Unraveling the reactions that unravel cellulose. J Phys Chem A 116:7098–7106. https://doi.org/10.1021/jp300405x

    CAS  Article  PubMed  Google Scholar 

  51. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ (2014a) The alpha–bet(a) of salty glucose pyrolysis: computational investigations reveal carbohydrate pyrolysis catalytic action by sodium ions. ACS Catal 5:192–202. https://doi.org/10.1021/cs501125n

    CAS  Article  Google Scholar 

  52. Mayes HB, Tian J, Nolte MW, Shanks BH, Beckham GT, Gnanakaran S, Broadbelt LJ (2014b) Sodium ion interactions with aqueous glucose: insights from quantum mechanics, molecular dynamics, and experiment. J Phys Chem B 118:1990–2000. https://doi.org/10.1021/jp409481f

    CAS  Article  PubMed  Google Scholar 

  53. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    CAS  Article  Google Scholar 

  54. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. https://doi.org/10.1007/s10570-011-9644-6

    CAS  Article  Google Scholar 

  55. Momany FA, Schnupf U (2011) DFTMD studies of beta-cellobiose: conformational preference using implicit solvent. Carbohydr Res 346:619–630. https://doi.org/10.1016/j.carres.2011.01.004

    CAS  Article  PubMed  Google Scholar 

  56. Nicol TWJ, Isobe N, Clark JH, Shimizu S (2017) Statistical thermodynamics unveils the dissolution mechanism of cellobiose. Phys Chem Chem Phys 19:23106–23112. https://doi.org/10.1039/C7CP04647B

    CAS  Article  PubMed  Google Scholar 

  57. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  58. Parr RG, Szentpály L, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    CAS  Article  Google Scholar 

  59. Peng J et al (2018) The effect of hydration number on the interfacial transport of sodium ions. Nature 557:701–705. https://doi.org/10.1038/s41586-018-0122-2

    CAS  Article  PubMed  Google Scholar 

  60. Peralta-Inga Z, Johnson GP, Dowd MK, Rendleman JA, Stevens ED, French AD (2002) The crystal structure of the α-cellobiose·2 NaI·2 H2O complex in the context of related structures and conformational analysis. Carbohyd Res 337:851–861. https://doi.org/10.1016/S0008-6215(02)00041-1

    CAS  Article  Google Scholar 

  61. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    CAS  Article  Google Scholar 

  62. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Article  Google Scholar 

  63. Rinaldi RSF (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Chemsuschem 2:1096–1107. https://doi.org/10.1002/cssc.200900188

    CAS  Article  PubMed  Google Scholar 

  64. Seeberger PH (2005) Exploring life’s sweet spot. Nature 437:1239. https://doi.org/10.1038/4371239a

    CAS  Article  PubMed  Google Scholar 

  65. Seeger R, Pople JA (1977) Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory. J Chem Phys 66:3045–3050. https://doi.org/10.1063/1.434318

    CAS  Article  Google Scholar 

  66. Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794. https://doi.org/10.1021/ja9034158

    CAS  Article  PubMed  Google Scholar 

  67. Strati GL, Willett JL, Momany FA (2002) Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++G**. Carbohyd Res 337:1833–1849. https://doi.org/10.1016/S0008-6215(02)00267-7

    CAS  Article  Google Scholar 

  68. Tang J, Zhu L, Fu X, Dai J, Guo X, Hu C (2017) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl–H2O/THF biphasic system. ACS Catal 7:256–266. https://doi.org/10.1021/acscatal.6b02515

    CAS  Article  Google Scholar 

  69. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409. https://doi.org/10.1021/jp004368u

    CAS  Article  Google Scholar 

  70. Voss JM, Kregel SJ, Fischer KC, Garand E (2018) IR–IR conformation specific spectroscopy of Na(+)(Glucose) adducts. J Am Soc Mass Spectrom 29:42–50. https://doi.org/10.1007/s13361-017-1813-x

    CAS  Article  PubMed  Google Scholar 

  71. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109. https://doi.org/10.1063/1.2409292

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Wong TW, Sumiran N (2013) Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance. J Pharm Pharmacol 66:646–657. https://doi.org/10.1111/jphp.12192

    CAS  Article  PubMed  Google Scholar 

  73. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371. https://doi.org/10.1063/1.464303

    CAS  Article  Google Scholar 

  74. Wu P, Chaudret R, Hu X, Yang W (2013) Noncovalent interaction analysis in fluctuating environments. J Chem Theory Comput 9:2226–2234. https://doi.org/10.1021/ct4001087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621. https://doi.org/10.1007/s10570-013-9869-7

    CAS  Article  Google Scholar 

  76. Yan S, Yao L (2015) DFT application in conformational determination of cellobiose. Carbohydr Res 404:117–123. https://doi.org/10.1016/j.carres.2014.12.006

    CAS  Article  PubMed  Google Scholar 

  77. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514. https://doi.org/10.1021/jp506013c

    CAS  Article  PubMed  Google Scholar 

  78. Zhang S, Moussodia R-O, Vértesy S, André S, Klein ML, Gabius H-J, Percec V (2015) Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci USA 112:5585–5590. https://doi.org/10.1073/pnas.1506220112

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support by the National Natural Science Foundation of China (No: 21573154) and the 111 Project (No: B17030).

Author information

Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. T. Qi is responsible for main of computation, analysis, and writing, Z. Huang, H. Xie, H.-M. Yang, Z.-B. Si, Y.-J. Lyu, L.-J. Liu J.-F. Zhang for part computation and analysis, H.-Q. Yang for design, analysis, and writing, and C.-W. Hu for design and revision. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hua-Qing Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3981 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, T., Huang, Z., Xie, H. et al. Cooperative interaction of sodium and chlorine ions with β-cellobiose in aqueous solution from quantum mechanics and molecular dynamics. Cellulose (2020). https://doi.org/10.1007/s10570-020-03258-8

Download citation

Keywords

  • β-Cellobiose
  • NaCl
  • Molecular dynamics
  • LC-ωPBE