Pure cellulose nanofibrils membranes loaded with ciprofloxacin for drug release and antibacterial activity

Abstract

The biocompatibility and very high specific area of cellulose nanofibrils (CNF) are properties of high interest for the development of active substrates for new medical device development. Enzyme pretreated CNF (CNF-e) can be self-organized into nanostructured membranes that are suitable for active principle ingredients (API) encapsulation through adsorption phenomena. In addition, tunable surface chemistry of CNF-e, allow for covalent immobilization of API. In this work, ciprofloxacin is integrated to CNF-e membranes according to two different strategies. The first one relies only on adsorption mechanisms; ciprofloxacin is encapsulated in the bulk before the membrane formation by solvent casting. The influence of the membrane properties and preparation parameters such as grammage, thickness and drying technique, are assessed with water uptake measurements and API release experiments. The second strategy deals with the covalent immobilization of ciprofloxacin directly onto CNF-e membrane. The two kinds of membranes are then compared in terms of antibacterial activity, in both static and dynamic conditions. Thick CNF-e membranes loaded with adsorbed ciprofloxacin that were overdried (2 h, 150 °C) prove to be more resistant in liquid medium and present a more prolonged drug release. However, these membranes rapidly lost their antibacterial activity, while CNF-e membranes with covalently immobilized ciprofloxacin remain contact active for several days. These 100% CNF active nanostructured membranes can be used as new wound dressing for topical application.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    CAS  Article  PubMed  Google Scholar 

  2. Appelbaum PC, Hunter PA (2000) The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15. https://doi.org/10.1016/S0924-8579(00)00192-8

    CAS  Article  PubMed  Google Scholar 

  3. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. https://doi.org/10.1007/s10570-009-9393-y

    CAS  Article  Google Scholar 

  4. Bardet R, Bras J (2014) Cellulose nanofibers and their use in paper industry. In: Materials and energy. World Scientific, pp 207–232. https://doi.org/10.1142/9789814566469_0013

    Google Scholar 

  5. Basu A, Lindh J, Ålander E, Strømme M, Ferraz N (2017) On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr Polym 174:299–308. https://doi.org/10.1016/j.carbpol.2017.06.073

    CAS  Article  PubMed  Google Scholar 

  6. Bober P, Liu J, Mikkonen KS, Ihalainen P, Pesonen M, Plumed-Ferrer C, von Wright A, Lindfors T, Xu C, Latonen R-M (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromol 15:3655–3663. https://doi.org/10.1021/bm500939x

    CAS  Article  Google Scholar 

  7. Dow G, Browne A, Sibbald RG (1999) Infection in chronic wounds: controversies in diagnosis and treatment. Ostomy Wound Manag 45:23–27, 29–40; quiz 41–2.

  8. Dufresne A (2017) Nanocellulose. De Gruyter, Berlin, Boston, From nature to high performance tailored materials. https://doi.org/10.1515/9783110480412

    Google Scholar 

  9. Dufresne A, Thomas S, Pothan LA (2013) Biopolymer nanocomposites: processing, properties, and applications. Wiley, Hoboken

    Google Scholar 

  10. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. https://doi.org/10.1021/bm800038n

    CAS  Article  PubMed  Google Scholar 

  11. Herbold BA, Brendler-Schwaab SY, Ahr HJ (2001) Ciprofloxacin: in vivo genotoxicity studies. Mutat Res Genet Toxicol Environ Mutagenesis 498:193–205. https://doi.org/10.1016/S1383-5718(01)00275-3

    CAS  Article  Google Scholar 

  12. Hoang Thi TH, Chai F, Leprêtre S, Blanchemain N, Martel B, Siepmann F, Hildebrand HF, Siepmann J, Flament MP (2010) Bone implants modified with cyclodextrin: Study of drug release in bulk fluid and into agarose gel. Int J Pharm 400:74–85. https://doi.org/10.1016/j.ijpharm.2010.08.035

    CAS  Article  PubMed  Google Scholar 

  13. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. https://doi.org/10.1039/C6NR03054H

    CAS  Article  PubMed  Google Scholar 

  14. Hooper DC, Wolfson JF (1991) Fluoroquinolone antimicrobial agents. N Engl J Med 11:384–394

    Google Scholar 

  15. Jorfi M, Foster EJ (2014) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. https://doi.org/10.1002/app.41719

    Article  Google Scholar 

  16. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189. https://doi.org/10.1007/s10570-018-1723-5

    CAS  Article  Google Scholar 

  17. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    CAS  Article  Google Scholar 

  18. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82:308–315. https://doi.org/10.1016/j.ejpb.2012.06.011

    CAS  Article  PubMed  Google Scholar 

  19. Laurén P (2018) Biomedical applications of nanofibrillar cellulose. Ph.D. thesis

  20. Lavoine N, Desloges I, Bras J (2014a) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537

    CAS  Article  Google Scholar 

  21. Lavoine N, Desloges I, Sillard C, Bras J (2014b) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose 21:4429–4442. https://doi.org/10.1007/s10570-014-0392-2

    CAS  Article  Google Scholar 

  22. Lavoine N, Tabary N, Desloges I, Martel B, Bras J (2014c) Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose. Colloids Surf B 121:196–205

    CAS  Article  Google Scholar 

  23. Lavoine N, Guillard V, Desloges I, Gontard N, Bras J (2016) Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydr Polym 149:40–50. https://doi.org/10.1016/j.carbpol.2016.04.048

    CAS  Article  PubMed  Google Scholar 

  24. Lee K-Y (2018) Nanocellulose and sustainability: production, properties, applications, and case studies

  25. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    CAS  Article  Google Scholar 

  26. Markham PN (1999) Inhibition of the emergence of ciprofloxacin resistance in streptococcus pneumoniae by the multidrug efflux inhibitor reserpine 2

  27. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  Google Scholar 

  28. Rol F, Belgacem MN, Gandini A, Bras J (2018) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2018.09.002

    Article  Google Scholar 

  29. Saini S, Belgacem N, Mendes J, Elegir G, Bras J (2015) Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl Mater Interfaces 7:18076–18085. https://doi.org/10.1021/acsami.5b04938

    CAS  Article  PubMed  Google Scholar 

  30. Saini S, Sillard CB, Belgacem MN, Bras J (2016a) Nisin anchored cellulose nanofiber for long term antimicrobial active food packaging. RSC Adv 6(15):12422–12430

    CAS  Article  Google Scholar 

  31. Saini S, Belgacem MN, Salon MCB, Bras J (2016b) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23:1–16

    Article  Google Scholar 

  32. Smyth M (2017) Nanocellulose based materials for Cell Culture (phdthesis). Université Grenoble Alpes, Grenoble

    Google Scholar 

  33. Smyth M, Fournier C, Driemeier C, Picart C, Foster EJ, Bras J (2017) Tunable structural and mechanical properties of cellulose nanofiber substrates in aqueous conditions for stem cell culture. Biomacromolecules 18:2034–2044. https://doi.org/10.1021/acs.biomac.7b00209

    CAS  Article  PubMed  Google Scholar 

  34. Sukul M, Ventura RD, Bae SH, Choi HJ, Lee SY, Lee BT (2017) Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater Lett 197:150–155. https://doi.org/10.1016/j.matlet.2017.03.102

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Clémentine Darpentigny from LGP2/CERMAV/CEA Leti for part of the successive antibacterial activity testing. Authors would like to thank the Agence Nationale de la Recherche and more especially CELLICAL Project (Grant ANR-15-CE08-0033) for the Ph.D. funding. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Bras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durand, H., Jaouen, P., Faure, E. et al. Pure cellulose nanofibrils membranes loaded with ciprofloxacin for drug release and antibacterial activity. Cellulose (2020). https://doi.org/10.1007/s10570-020-03231-5

Download citation

Keywords

  • Cellulose nanofibrils
  • Antibacterial activity
  • Drug release