Skip to main content

Advertisement

Log in

Stable microfluidized bacterial cellulose suspension

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, nanofibrillated suspensions of bacterial cellulose (BC) were produced via microfluidization. The effects of the size of the openings of the microfluidizer chamber and ultrasonication on the nanofibril properties were evaluated. The results of the X-ray diffraction analysis indicated a considerable reduction in BC crystallinity (86–65%) and crystallite size (5.8–4.0 nm) after microfluidization and ultrasonication. Thermal analysis showed a remarkable reduction from 337 to 283 °C in the initial temperature of degradation along the several steps of BC deconstruction. Moreover, infrared analysis indicated that both processes led to an increase in the Iβ content (43–66%) of the fibers. Morphological analysis showed that the fibrillation process used exposed the internal faces of the ribbon-like nanofibrils, and thus, increased the surface area of the cellulose network, and produced fibers with a high aspect ratio (L/d). A thermally stable nanofibrillated suspension could be obtained by adding carboxymethyl cellulose as a simple and effective way to maintain cellulose fibers dispersed in the solution during sterilization by autoclaving.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade FK, Alexandre N, Amorim I, Gartner F, Maurício AC, Luís AL, Gama M (2013) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28(1):97–112

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H, El-Deftar MM, El-Henawy AA, El-Sheikh HH, Abdel-Shakour EH, Hasanin MS (2016) Properties of modified carboxymethyl cellulose and its use as bioactive compound. Carbohydr Polym 153:641–651

    Article  CAS  Google Scholar 

  • Briois B, Saito T, Pétrier C, Putaux JL, Nishiyama Y, Heux L, Molina-Boisseau S (2013) Iα → Iβ transition of cellulose under ultrasonic radiation. Cellulose 20(2):597–603

    Article  CAS  Google Scholar 

  • Çakar F, Özer I, Aytekin AÖ, Sahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7–13

    Article  Google Scholar 

  • Chai MN, Isa MIN (2013) The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. J Cryst Process Technol 3:1–4

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter Incorporated, Berlin

    Book  Google Scholar 

  • Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E et al (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Biores Technol 102:9105–9110

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  • Jin-shu YANG (2014) Application of sodium carboxymethyl cellulose in food industry. Acad Period Farm Prod Process 22:027

    Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    CAS  Google Scholar 

  • Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447

    Article  CAS  Google Scholar 

  • Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  Google Scholar 

  • Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules 12(3):716–720

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Article  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335

    Article  CAS  Google Scholar 

  • Levdik I, Inshakov MD, Misyurova EP, Nikitin VN (1967) Study of pulp structure by infrared spectroscopy. Tr Vses Nauch Issled Irst Tsellyul Bum Prom 52:109–111

    Google Scholar 

  • Li M, Wang LJ, Li D, Cheng YL, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119

    Article  CAS  Google Scholar 

  • Liimatainen H, Haavisto S, Haapala A, Niinimaki J (2009) Influence of adsorbed and dissolved carboxymethyl cellulose on fibre suspension dispersing, dewaterability, and fines retention. BioResources 4(1):321–340

    CAS  Google Scholar 

  • Matthews JF, Himmel ME, Crowley MF (2012) Conversion of cellulose Iα to Iβ via a high temperature intermediate (I-HT) and other cellulose phase transformations. Cellulose 19(1):297–306

    Article  CAS  Google Scholar 

  • Mirhosseini H, Tan CP, Hamid NS, Yusof S (2008) Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf A 315(1):47–56

    Article  CAS  Google Scholar 

  • Molina-Ramírez C, Castro C, Zuluaga R, Gañán P (2017) Physical characterization of bacterial cellulose produced by komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J Polym Environ 26(2):830–837

    Article  Google Scholar 

  • Nascimento ES, Lima HLS, Barroso MKA, Brígida AIS, Andrade FK, Borges MF, Morais JPS, Muniz CR, Rosa MF (2016) Mesquite (Prosopis juliflora (Sw.)) extract is an alternative nutrient source for bacterial cellulose production. J Biobased Mater Bioenergy 10(1):63–70

    Article  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B63:674–685

    Article  Google Scholar 

  • Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJ (2008) Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, p 369

    Google Scholar 

  • Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234

    Article  CAS  Google Scholar 

  • Ramli NA, Wong TW (2011) Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int J Pharm 403(1):73–82

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci Part A Polym Chem 57(165):651–660

    CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnol Adv 33(8):1547–1571

    Article  CAS  Google Scholar 

  • Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11(6):5543–5560

    Article  Google Scholar 

  • Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88

    Article  CAS  Google Scholar 

  • Tsalagkas D, Dimic-Misic K, Gane P, Rojas OJ, Maloney T, Csoka L (2015) Rheological behaviour of sonochemically prepared bacterial cellulose aqueous dispersions. In: 6th International symposium on industrial engineering (SIE 2015), Belgrade, serbia

  • Ullah H, Badshah M, Mäkilä E, Salonen J, Shahbazi MA, Santos HA, Khan T (2017) Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 24(3):1445–1454

    Article  CAS  Google Scholar 

  • Vanhatalo K, Lundin T, Koskimäki A, Lillandt M, Dahl O (2016) Microcrystalline cellulose property–structure effects in high-pressure fluidization: microfibril characteristics. J Mater Sci 51(12):6019–6034

    Article  CAS  Google Scholar 

  • Vasconcelos NF, Feitosa JPA, da Gama FMP, Morais JPS, Andrade FK, de Souza MDSM, de Freitas Rosa M (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431

    Article  CAS  Google Scholar 

  • Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polym J 35(2):155–159

    Article  CAS  Google Scholar 

  • Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stab 95(8):1330–1334

    Article  CAS  Google Scholar 

  • Wang Y, Lian J, Wan J, Ma Y, Zhang Y (2015) A supramolecular structure insight for conversion property of cellulose in hot compressed water: polymorphs and hydrogen bonds changes. Carbohydr Polym 133:94–103

    Article  CAS  Google Scholar 

  • Yadollahi M, Namazi H (2013) Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res 15(4):1–9

    Article  Google Scholar 

  • Yin N, Stilwell MD, Santos TMA, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  Google Scholar 

  • Zemljič LF, Steniusb P, Laineb J, Stana-Kleinscheka K, Ribitschc V (2006) Characterization of cotton fibres modified by carboxymethyl cellulose. Lenzing Berichte 85:68–76

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), the National Counsel of Technological and Scientific Development (CNPq, Brazil), the Foundation for Science and Technology (FCT, Portugal), and also the Embrapa Tropical Agroindustry. This research study was also supported by the international collaboration Program FCT/CAPES (No. 99999.008530/2014-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morsyleide F. Rosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, F.K., Morais, J.P.S., Muniz, C.R. et al. Stable microfluidized bacterial cellulose suspension. Cellulose 26, 5851–5864 (2019). https://doi.org/10.1007/s10570-019-02512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02512-y

Keywords

Navigation