Skip to main content
Log in

Study of electrothermal properties of silver nanowire/polydopamine/cotton-based nanocomposites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, cotton fabrics were reported to be typically functionalized by loading silver nanowires (AgNW) on the surface of the polydopamine modified cotton fabric. Firstly, AgNW were prepared by a polyol method and then a polydopamine-modified cotton fabric was prepared by being immersed in AgNW dispersion by the dip-coating method. The resulting silver nanowire/polydopamine/cotton-based nanocomposites (APCN) has a surface specific resistance as low as 2.4 Ω and has good durability and flexibility. In addition, the electrothermal properties of APCN were investigated by applied voltage. The result showed that the composite material can reach 80 °C in a short time under the voltage of 1.8 V, and conform to the power balance model. The steady-state temperature of the composite material is closely related to the voltage, and has a quadratic relationship with the voltage and expresses linear relation with the electric power.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320

    Article  CAS  Google Scholar 

  • Ashraf S, Saifur R, Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21:395–405

    Article  CAS  Google Scholar 

  • Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G (2009) Transparent metal nanowire thin films prepared in mesostructured templates. Nano Lett 9:4246

    Article  CAS  PubMed  Google Scholar 

  • Bae JJ et al (2012) Heat dissipation of transparent graphene defoggers. Adv Funct Mater 22:4819–4826

    Article  CAS  Google Scholar 

  • Cai D, Zhou J, Duan P, Luo G, Zhang Y, Fu F, Liu X (2018) A hierarchical structure of l-cysteine/Ag NPs/hydrogel for conductive cotton fabrics with high stability against mechanical deformation. Cellulose 25:7355–7367

    Article  CAS  Google Scholar 

  • Cao M, Wang M, Li L, Qiu H, Padhiar MA, Yang Z (2018a) Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50:528–535

    Article  CAS  Google Scholar 

  • Cao M, Wang M, Li L, Qiu H, Yang Z (2018b) Effect of graphene-EC on Ag NW-based transparent film heaters: optimizing the stability and heat dispersion of films. ACS Appl Mater Interfaces 10:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Caroline C, Céline M, Eléonore M, Henda B, Alexandre C, Jean-Pierre S (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research 5:427–433

    Article  CAS  Google Scholar 

  • Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873:149–159

    Article  CAS  Google Scholar 

  • Chen TL, Ghosh DS, Marchena M, Osmond J, Pruneri V (2015) Nanopatterned graphene on a polymer substrate by a direct peel-off technique. ACS Appl Mater Interfaces 7:5938–5943

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, He M, Ran J, Cai G, Wu J, Wang X (2018) In situ reduction of TiO2 nanoparticles on cotton fabrics through polydopamine templates for photocatalysis and UV protection. Cellulose 25:1413–1424

    Article  CAS  Google Scholar 

  • Choi S et al (2015) Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9:6626–6633

    Article  CAS  PubMed  Google Scholar 

  • Coskun S, Aksoy B, Unalan HE (2011) Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des 11:4963–4969

    Article  CAS  Google Scholar 

  • Cui H-W, Suganuma K, Uchida H (2015) Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Research 8:1604–1614

    Article  CAS  Google Scholar 

  • Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly (dopamine). Langmuir ACS J Surf Coll 28:6428

    Article  CAS  Google Scholar 

  • El-Tantawy F (2001) Joule heating treatments of conductive butyl rubber/ceramic superconductor composites: a new way for improving the stability and reproducibility? Eur Polym J 37:565–574

    Article  CAS  Google Scholar 

  • Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24:3179–3190

    Article  CAS  Google Scholar 

  • Gelves GA, Sundararaj U, Haber JA (2010) Electrostatically dissipative polystyrene nanocomposites containing copper nanowires. Macromol Rapid Commun 26:1677–1681

    Article  CAS  Google Scholar 

  • Giesz P, Mackiewicz E, Nejman A, Celichowski G, Cieślak M (2017) Investigation on functionalization of cotton and viscose fabrics with AgNWs. Cellulose 24:409–422

    Article  CAS  Google Scholar 

  • Gueye MN, Carella A, Demadrille R, Simonato J-P (2017) All-polymeric flexible transparent heaters. ACS Appl Mater Interfaces 9:27250–27256

    Article  CAS  PubMed  Google Scholar 

  • Hakansson E, Kaynak A, Lin T, Nahavandi S, Jones T, Hu E (2004) Characterization of conducting polymer coated synthetic fabrics for heat generation. Synth Met 144:21–28

    Article  CAS  Google Scholar 

  • Hong S, Yun SN, Choi S, Song IT, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711–4717

    Article  CAS  Google Scholar 

  • Ilanchezhiyan P, Zakirov AS, Kumar GM, Yuldashev SU, Cho HD, Kang TW, Mamadalimov AT (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5:10697–10702

    Article  CAS  Google Scholar 

  • Jang HS, Sang KJ, Nahm SH (2011) The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49:111–116

    Article  CAS  Google Scholar 

  • Jason NN, Shen W, Cheng W (2015) Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl Mater Interfaces 7:16760–16766

    Article  CAS  PubMed  Google Scholar 

  • Ji S, He W, Wang K, Ran Y, Ye C (2015) Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 10:4951–4960

    Article  CAS  Google Scholar 

  • Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187

    Article  CAS  PubMed  Google Scholar 

  • Jin FW, Hai RL (2011) Research on wearable sensors based on knitted fabrics with silver plating fiber. Adv Mater Res 331:36–39

    Article  Google Scholar 

  • Ju K-Y, Lee Y, Lee S, Park SB, Lee J-K (2011) Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromol 12:625–632

    Article  CAS  Google Scholar 

  • Kang J et al (2011) High-performance graphene-based transparent flexible heaters. Nano Lett 11:5154–5158

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Uniformly Interconnected silver-nanowire networks for transparent film heaters. Adv Funct Mater 23:1250–1255

    Article  CAS  Google Scholar 

  • Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl-or CuCl. J Mater Chem 18:437–441

    Article  CAS  Google Scholar 

  • Lee JY, Dong WP, Lim JO (2003) Polypyrrole-coated woven fabric as a flexible surface-heating element. Macromol Res 11:481–487

    Article  CAS  Google Scholar 

  • Li C, Liu H, Li Z (2013) Structure and electric conductive heating performance of silver-plated filament knitted fabrics. J Text Res 34:52–56

    Google Scholar 

  • Luo J, Lu H, Zhang Q, Yao Y, Chen M, Li Q (2016) Flexible carbon nanotube/polyurethane electrothermal films. Carbon 110:343–349

    Article  CAS  Google Scholar 

  • Mi Y et al (2012) A simple and feasible in situ reduction route for preparation of graphene lubricant films applied to a variety of substrates. J Mater Chem 22:8036–8042

    Article  CAS  Google Scholar 

  • Nateghi MR, Shateri-Khalilabad M (2015) Silver nanowire-functionalized cotton fabric. Carbohydr Polym 117:160–168

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114:530–532

    Article  CAS  Google Scholar 

  • Park JH, Oh KW, Choi H-M (2013) Preparation and characterization of cotton fabrics with antibacterial properties treated by crosslinkable benzophenone derivative in choline chloride-based deep eutectic solvents. Cellulose 20:2101–2114

    Article  CAS  Google Scholar 

  • Shi Z et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3:603–611

    Article  CAS  Google Scholar 

  • Sui D, Huang Y, Huang L, Liang J, Ma Y, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7:3186–3192

    Article  CAS  PubMed  Google Scholar 

  • Sun H et al (2018) Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. Appl Surf Sci 435:809–814

    Article  CAS  Google Scholar 

  • Tang B, Kaur J, Sun L, Wang X (2013) Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose 20:3053–3065

    Article  CAS  Google Scholar 

  • Tian S, He P, Chen L, Wang H, Ding G, Xie X (2017) Electrochemical fabrication of high quality graphene in mixed electrolyte for ultrafast electrothermal heater. Chem Mater 29:6214–6219

    Article  CAS  Google Scholar 

  • Waite JH (1983) Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. J Biol Chem 258:2911–2915

    CAS  PubMed  Google Scholar 

  • Wang F, Gao C, Holmér I (2010) Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study. J Occup Environ Hyg 7:501–505

    Article  PubMed  Google Scholar 

  • Wang D, Li D, Zhao M, Xu Y, Wei Q (2018) Multifunctional wearable smart device based on conductive reduced graphene oxide/polyester fabric. Appl Surf Sci 454:218–226

    Article  CAS  Google Scholar 

  • Wu J et al (2011) Mussel-inspired chemistry for robust and surface-modifiable multilayer films. Langmuir 27:13684–13691

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhao X (2009) Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: application to metal-enhanced fluorescence (MEF). Appl Surf Sci 255:7361–7368

    Article  CAS  Google Scholar 

  • Yang J, Xu H, Zhang L, Zhong Y, Sui X, Mao Z (2017) Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surf Coat Technol 309:149–154

    Article  CAS  Google Scholar 

  • Yao T, Wei H, Wang S, Tao Z, Cheng L (2014) One step synthesis of silver nanowires used in preparation of conductive silver paste. J Mater Sci Mater Electron 25:2929–2933

    Article  CAS  Google Scholar 

  • Yao X, Hawkins SC, Falzon BG (2018) An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs. Carbon 136:130–138

    Article  CAS  Google Scholar 

  • Yoon YH, Song JW, Kim D, Kim J, Park JK, Oh SK, Han CS (2010) Transparent film heater using single-walled carbon nanotubes. Adv Mater 19:4284–4287

    Article  CAS  Google Scholar 

  • Zhang L, Baima M, Andrew TL (2017a) Transforming commercial textiles and threads into sewable and weavable electric heaters. ACS Appl Mater Interfaces 9:32299–32307

    Article  CAS  PubMed  Google Scholar 

  • Zhang T-Y et al (2017b) A large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxide. Appl Phys Lett 111:121901

    Article  CAS  Google Scholar 

  • Zhang C, Zhou G, Rao W, Fan L, Xu W, Xu J (2018) A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25:4859–4870

    Article  CAS  Google Scholar 

Download references

Funding

This work is jointly supported by “the Fundamental Research Funds for the Central Universities (2232018G-01)”, by the National Key Research and Development Program of China (Grant No. 2016YFC0802802) and by Fok Ying Tung (huoyingdong) Education Foundation (151071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqun Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yu, W. & Du, Z. Study of electrothermal properties of silver nanowire/polydopamine/cotton-based nanocomposites. Cellulose 26, 5995–6007 (2019). https://doi.org/10.1007/s10570-019-02506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02506-w

Keywords

Navigation