Laboratory filter paper from superhydrophobic to quasi-superamphiphobicity: facile fabrication, simplified patterning and smart application

Abstract

Superamphiphobic surfaces generally need a specific combination of low surface energy and re-entrant surface structure. Herein, we have created a hexane suspension of trichloro(1H,1H,2H,2H-tridecafluoro-n-octyl) silane, tetraethyl orthosilicate, silicon dioxide and titanium dioxide nanoparticles and modify a series of filter papers by one-step immersion in 10 min. Superhydrophobic and quasi-superoleophobic properties are obtained for the optimal filter papers, which repel both of polar and non-polar liquids such as water, glycerol, 1,4-butanediol, soybean oil and 1-octadecene with the contact angles of 168°, 158°, 154°, 145° and 121°, respectively. More importantly, the respective contribution of each component to the superhydrophobic and oleophobical property is explicated through a series of comparative experiments based on the optimal suspension prescription. The wettability transformation from quasi-superamphiphobicity to superhydrophilicity after UV irradiation is evaluated and illustrated. What’s more, the patterned paper is successfully used for the colorimetric detection of glucose using a simple paper-based analytical device. A linear correlation between gray intensity (GI) and glucose concentration (C), GI = − 10.7C + 161.8 is achieved with a correlation coefficient of 0.991, indicating the potential for semi-quantitative analysis of real sample in the field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andreas G, FlorianL Markus B, Zhang K (2014) Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester. Cellulose 21:357–366. https://doi.org/10.1007/s10570-013-0160-8

    Article  CAS  Google Scholar 

  2. Arbatan T, Zhang L, Fang X, Shen W (2012) Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem Eng J 210:74–79. https://doi.org/10.1016/j.cej.2012.08.074

    Article  CAS  Google Scholar 

  3. Baidya A, Ganayee MA, Jakka RS, Tam KC, Das SK, Ras RHA, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11:11091–11099. https://doi.org/10.1021/acsnano.7b05170

    Article  CAS  PubMed  Google Scholar 

  4. Cai L, Wang Y, Wu Y, Xu C, Zhong M, Lai H, Huang J (2014a) Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593–4598. https://doi.org/10.1039/c4an00988f

    Article  CAS  PubMed  Google Scholar 

  5. Cai L, Xu C, Lin S, Luo J, Wu M, Yang F (2014b) A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8:056504–056508. https://doi.org/10.1063/1.4898096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. https://doi.org/10.2174/187221013804484854

    Article  CAS  PubMed  Google Scholar 

  7. Chen F, Song J, Lu Y, Huang S, Liu X, Sun J, Carmalt C, Parkin I, Xu W (2015) Creating robust superamphiphobic coatings for both hard and soft materials. J Mater Chem A 3:20999–21008. https://doi.org/10.1039/c5ta05333a

    Article  CAS  Google Scholar 

  8. Chen L, Guo Z, Liu W (2017) Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. J Mater Chem A 5:14480–14507. https://doi.org/10.1039/C7TA03248J

    Article  CAS  Google Scholar 

  9. Darmanin T, Guittard F (2015) Highly polar linkers (urea, carbamate, thiocarbamate) for superoleophobic/superhydrophobic or oleophobic/hydrophilic properties. Adv Mater Interfaces 2:1500081–1500088. https://doi.org/10.1002/admi.201500081

    Article  CAS  Google Scholar 

  10. Fukada K, Kawamura N, Kawamura N, Shiratori S (2017) Trace material capture by controlled liquid droplets on a superhydrophobic/hydrophilic surface. Anal Chem 89:10391–10396. https://doi.org/10.1021/acs.analchem.7b02369

    Article  CAS  PubMed  Google Scholar 

  11. Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RMD, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv Funct Mater 24(1):60–70. https://doi.org/10.1002/adfm.201300780

    Article  CAS  Google Scholar 

  12. Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteja A (2016) Designing durable icephobicsurfaces. Sci Adv 2:e1501496–e1501496. https://doi.org/10.1126/sciadv.1501496

    Article  PubMed  PubMed Central  Google Scholar 

  13. He Q, Ma C, Hu X, Chen H (2013) Method for fabrication of paper based microfluidic devices by alkylsilane self-assembling and uv/o3-patterning. Anal Chem 85:1327–1331. https://doi.org/10.1021/ac303138x

    Article  CAS  PubMed  Google Scholar 

  14. Hizal F, Rungraeng N, Lee J, Jun S, Busscher HJ, van der Mei HC, Choi CH (2017) Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. ACS Appl Mater Interfaces 9:12118–12129. https://doi.org/10.1021/acsami.7b01322

    Article  CAS  PubMed  Google Scholar 

  15. Huang L, Chen K, Lin C, Yang R, Gerhardt RA (2011) Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. J Mater Sci 46:2600–2605. https://doi.org/10.1007/s10853-010-5112-1

    Article  CAS  Google Scholar 

  16. Jalal UM, Jin GJ, Shim JS (2017) Paper–plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal Chem 89:13160–13166. https://doi.org/10.1021/acs.analchem.7b02612

    Article  CAS  PubMed  Google Scholar 

  17. Jiang L, Tang Z, Clinton RM, Breedveld V, Hess DW (2017) Two-step process to create “roll-off” superamphiphobicpaper surfaces. ACS Appl Mater Interfaces 9:9195–9203. https://doi.org/10.1021/acsami.7b00829

    Article  CAS  PubMed  Google Scholar 

  18. Kamarainen T, Arcot LR, Johansson LS, Campbell J, Tammelin T, Franssila S, Laine J, Rojas OJ (2016) UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose 23:1847–1857. https://doi.org/10.1007/s10570-016-0942-x

    Article  CAS  Google Scholar 

  19. Li D, Guo Z (2017) Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS. Appl Surf Sci 426:271–278. https://doi.org/10.1016/j.apsusc.2017.07.150

    Article  CAS  Google Scholar 

  20. Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590. https://doi.org/10.1021/la800157t

    Article  CAS  PubMed  Google Scholar 

  21. Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A (2016) Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Funct Mater 26:6121–6131. https://doi.org/10.1002/adfm.201601821

    Article  CAS  Google Scholar 

  22. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347:1132–1135. https://doi.org/10.1126/science.aaa0946

    Article  CAS  PubMed  Google Scholar 

  23. Ly B, Belgacem MN, Bras J, Brochier SMC (2010) Grafting of cellulose by fluorine-bearing silane coupling agents. Mat Sci Eng C 30:343–347. https://doi.org/10.1016/j.msec.2009.11.009

    Article  CAS  Google Scholar 

  24. Oh MJ, Lee SY, Paik KH (2011) Preparation of hydrophobic self-assembled monolayers on paper surface with silanes. J Ind Eng Chem 17:149–153. https://doi.org/10.1016/j.jiec.2010.12.014

    Article  CAS  Google Scholar 

  25. Phanthong P, Guan G, Karnjanakom S, Hao X, Kusakabe K, Abudula A (2016) Amphiphobicnanocellulose-modified paper: fabrication and evaluation. RSC Adv 6:13328–13334. https://doi.org/10.1039/C5RA24986D

    Article  CAS  Google Scholar 

  26. Qing Y, Hu C, Yang C, An K, Tang F, Tan Ju, Liu C (2017) Rough structure of electrodeposition as a template for an ultrarobustself-cleaning surface. ACS Appl Mater Interfaces 9:16571–16580. https://doi.org/10.1021/acsami.6b15745

    Article  CAS  PubMed  Google Scholar 

  27. Rollings DAE, Veinot JGC (2008) Polysiloxane nanofibers via surface initiated polymerization of vapor phase reagents: a mechanism of formation and variable wettability of fiber bearing substrates. Langmuir 24:13653–13662. https://doi.org/10.1021/la801595m

    Article  CAS  PubMed  Google Scholar 

  28. Schlaich C, CamachoLC YuL, Achazi K, Wei Qiang, Haag R (2016) Surface-independent hierarchical coatings with superamphiphobicproperties. ACS Appl Mater Interfaces 8:29117–29127. https://doi.org/10.1021/acsami.6b08487

    Article  CAS  PubMed  Google Scholar 

  29. She Z, Li Q, Wang Z, Li L, Chen F, Zhou J (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228:415–424. https://doi.org/10.1016/j.cej.2013.05.017

    Article  CAS  Google Scholar 

  30. Shi Y, Liu H, Zhu X, Zhu J, Zuo Y, Yang Y, Jiang F, Sun C, Zhao W (2018) Optofluidic differential colorimetry for rapid nitrite determination. Lab Chip 18:2994–3002. https://doi.org/10.1039/C8LC00690C

    Article  CAS  PubMed  Google Scholar 

  31. Song J, Rojas O (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238. https://doi.org/10.3183/NPPRJ-2013-28-02-p216-238

    Article  CAS  Google Scholar 

  32. Songok J, Toivakka M (2016) Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid Nanofluid 20:63–72. https://doi.org/10.1007/s10404-016-1726-1

    Article  Google Scholar 

  33. Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F (2017) A facile procedure to modify filter paper for oil–water separation. RSC Adv 7:30495–30499. https://doi.org/10.1039/C7RA03754F

    Article  CAS  Google Scholar 

  34. Wang H, Fang J, Cheng T, Ding J, Qu L, Dai L, Wang X, Lin T (2008) One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun 7:877–879. https://doi.org/10.1039/b714352d

    Article  CAS  Google Scholar 

  35. Wang S, Liu K, Yao X, Lei J (2015) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115:8230–8293. https://doi.org/10.1021/cr400083y

    Article  CAS  PubMed  Google Scholar 

  36. Wen M, Zhong J, Zhao S, Bu T, Guo L, Ku Z, Peng Y, Huang F, Cheng Y, Zhang Q (2017) Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. J Mater Chem A 5:8352–8359. https://doi.org/10.1039/c7ta01999h

    Article  CAS  Google Scholar 

  37. Wolfberger A, Kargl R, Griesser T, Spirk S (2014) Photoregeneration of trimethylsilyl cellulose as a tool for microstructuring ultrathin cellulose supports. Molecules 19:16266–16273. https://doi.org/10.3390/molecules191016266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue Z, Liu M, Jiang L (2012) Recent developments in polymeric superoleophobic surfaces. J Polym Sci Part B Polym Phys 50:1209–1224. https://doi.org/10.1002/polb.23115

    Article  CAS  Google Scholar 

  39. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. https://doi.org/10.1039/c3lc50169h

    Article  CAS  PubMed  Google Scholar 

  40. Yong J, Chen F, Yang Q, HuoJ Hou X (2017) Superoleophobic surfaces. Chem Soc Rev 46:4168–4217. https://doi.org/10.1039/C6CS00751A

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Kwok H, Li X, Yu H (2017) Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application. ACS Appl Mater Interfaces 9:39728–39735. https://doi.org/10.1021/acsami.7b08957

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation. ACS Nano 8:1402–1409. https://doi.org/10.1021/nn4052277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the National Nature Science Foundation of China (No. 51,802,082), and the Landmark Innovation Project of Henan Institute of Science and Technology (No. 2015BZ02), and the ‘‘Funds for Tai Hang Scholar’’ of HIST, and the Science and Technology Project of Henan Province (No. 142102210047) and the Scientific Innovation Team in Henan Province (No. C20150020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Ping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 14102 kb)

Supplementary material 3 (MP4 19206 kb)

Supplementary material 4 (MP4 64349 kb)

Supplementary material 1 (DOCX 542 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, KF., Li, PP., Zhang, YP. et al. Laboratory filter paper from superhydrophobic to quasi-superamphiphobicity: facile fabrication, simplified patterning and smart application. Cellulose 26, 3859–3872 (2019). https://doi.org/10.1007/s10570-019-02338-8

Download citation

Keywords

  • Superamphiphobic surface
  • Filter paper
  • Titanium dioxide
  • Glucose