Skip to main content
Log in

Laboratory filter paper from superhydrophobic to quasi-superamphiphobicity: facile fabrication, simplified patterning and smart application

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Superamphiphobic surfaces generally need a specific combination of low surface energy and re-entrant surface structure. Herein, we have created a hexane suspension of trichloro(1H,1H,2H,2H-tridecafluoro-n-octyl) silane, tetraethyl orthosilicate, silicon dioxide and titanium dioxide nanoparticles and modify a series of filter papers by one-step immersion in 10 min. Superhydrophobic and quasi-superoleophobic properties are obtained for the optimal filter papers, which repel both of polar and non-polar liquids such as water, glycerol, 1,4-butanediol, soybean oil and 1-octadecene with the contact angles of 168°, 158°, 154°, 145° and 121°, respectively. More importantly, the respective contribution of each component to the superhydrophobic and oleophobical property is explicated through a series of comparative experiments based on the optimal suspension prescription. The wettability transformation from quasi-superamphiphobicity to superhydrophilicity after UV irradiation is evaluated and illustrated. What’s more, the patterned paper is successfully used for the colorimetric detection of glucose using a simple paper-based analytical device. A linear correlation between gray intensity (GI) and glucose concentration (C), GI = − 10.7C + 161.8 is achieved with a correlation coefficient of 0.991, indicating the potential for semi-quantitative analysis of real sample in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

Financial support from the National Nature Science Foundation of China (No. 51,802,082), and the Landmark Innovation Project of Henan Institute of Science and Technology (No. 2015BZ02), and the ‘‘Funds for Tai Hang Scholar’’ of HIST, and the Science and Technology Project of Henan Province (No. 142102210047) and the Scientific Innovation Team in Henan Province (No. C20150020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 542 kb)

Supplementary material 2 (MP4 14102 kb)

Supplementary material 3 (MP4 19206 kb)

Supplementary material 4 (MP4 64349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KF., Li, PP., Zhang, YP. et al. Laboratory filter paper from superhydrophobic to quasi-superamphiphobicity: facile fabrication, simplified patterning and smart application. Cellulose 26, 3859–3872 (2019). https://doi.org/10.1007/s10570-019-02338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02338-8

Keywords

Navigation