Skip to main content
Log in

Near-complete removal of non-cellulosic components from bamboo by 1-pentanol induced organosolv pretreatment under mild conditions for robust cellulose enzymatic hydrolysis

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Based on Hildebrand solubility parameter (δH) theory, a novel organosolv pretreatment medium (OPM), 1-pentanol (80%, v/v)–water mixture with a δH value of 27.4 (J/cm3)−1/2, was discovered. This OPM achieved near-complete removal of non-cellulosic components (hemicellulose 96.2% and lignin 87.8%) from bamboo under mild conditions [130 °C, 20 min, 4% (w/w) H2SO4]. For the OPMs with similar δH values [DMSO (80%, v/v)- and 1-pentanol (80%, v/v)-water, 30.9 vs. 27.4 (J/cm3)−1/2] to that of bamboo lignin [28.3 (J/cm3)−1/2] used in this study, the effect of the δh value (contribution of hydrogen-binding force to the δH) on lignin removal was also discussed. After overcoming the negative effect of lignin deposits on enzymes with biocompatible soy protein (SP), a decent cellulose enzymatic conversion (EC) of 92.6% was achieved by 1-pentanol (80%, v/v)-water induced organosolv pretreatment at a low cellulase loading (5 FPU/g glucan). This cellulose EC was much higher than those of other OPMs (< 63%) with the δH values very different from that of bamboo lignin. Integration of organosolv pretreatment with an ideal OPM and enzymatic hydrolysis using SP as an additive can be thereby viewed as a viable way to achieve the robust cellulose EC at low enzyme loading, which shows great potential for improving the economics of organosolv pretreatment-based lignocellulose biorefinery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argyropoulos DS, Sun YJ, Paluš E (2002) Isolation of residual kraft lignin in high yield and purity. J Pulp Pap Sci 28:50–54

    CAS  Google Scholar 

  • Barton AFM (1975) Solubility parameters. Chem Rev 75:731–753

    Article  CAS  Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154

    Article  CAS  Google Scholar 

  • Glasser WG, Barnett CA, Muller PC, Sarkanen KV (1983) The chemistry of several novel bioconversion lignins. J Agric Food Chem 31:921–930

    Article  CAS  Google Scholar 

  • Granata A, Argyropoulos DS (1995) 2-chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem 43:1538–1544

    Article  CAS  Google Scholar 

  • Hatakeyama H (1992) Thermal Analysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer series in wood science. Springer, Berlin, pp 200–214

    Chapter  Google Scholar 

  • Hildebrand JH, Scott RL (1950) The solubility of nonelectrolytes, 3rd edn. Rheinhold, New York

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112:252–262

    Article  CAS  PubMed  Google Scholar 

  • Laine J, Stenius P, Carlsson G, Ström G (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1:145–160

    Article  CAS  Google Scholar 

  • Lê HQ, Zaitseva A, Pokki J, Ståhl M, Alopaeus V, Sixta H (2016) Solubility of organosolv lignin in γ-valerolactone/water binary mixtures. Chemsuschem 9:2939–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Doherty T, Linhardt R, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modelling. Bioproc Biosyst Eng 39:133–140

    Article  CAS  Google Scholar 

  • Liu J, Li RQ, Shuai L, You JH, Zhao YB, Chen L, Li M, Chen LH, Huang LL, Luo XL (2017) Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Ind Crop Prod 107:139–148

    Article  CAS  Google Scholar 

  • Liu J, Gong ZG, Yang GX, Chen LH, Huang LL, Zhou YH, Luo XL (2018) Novel kinetic models of xylan dissolution and degradation during ethanol based auto-catalyzed organosolv pretreatment of bamboo. Polymers 10:1149. https://doi.org/10.3390/polym10101149

    Article  CAS  PubMed Central  Google Scholar 

  • Lu Q, Oh DX, Lee Y, Jho Y, Hwang DS, Zeng H (2013) Nanomechanics of cation–π interactions in aqueous solution. Angew Chem Int Ed 52:3944–3948

    Article  CAS  Google Scholar 

  • Mcdonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186–193

    CAS  Google Scholar 

  • Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57:1441–1446

    Article  CAS  Google Scholar 

  • Pan XJ, Arato C, Gilkes N, Gregg DJ, Mabee W, Pye EK, Xiao Z, Zhang X, Saddler JN (2005) Biorefining of softwoods using ethanol organosolv pulping—preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Clarke K, Li K (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Quesada-Medina J, López-Cremades FJ, Olivares-Carrillo P (2010) Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory. Bioresour Technol 101:8252–8260

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Schuerch C (1952) The solvent properties of liquids and their reaction to the solubility, swelling, isolation and fractionation of lignin. J Am Chem Soc 74:5061–5067

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin JAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shi JH, Liu J, Li M, Huang LL, Chen LH, Luo XL (2018) Acid-free ethanol-water pretreatment with low ethanol concentration for robust enzymatic saccharification of cellulose in bamboo. Bioenergy Res 11:665–676

    Article  CAS  Google Scholar 

  • Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher J (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354:329–333

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), technical report (NREL/TP-510-42618); National Renewable Energy Laboratory, Denver West Parkway, Golden, Colorado, USA

  • Wang Q, Chen K, Li J, Yang G, Liu S, Xu J (2011) The solubility of lignin from bagasse in a 1, 4-butanediol/water system. Bioresources 6:3034–3043

    CAS  Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109:381–389

    Article  CAS  PubMed  Google Scholar 

  • Wen JL, Sun SN, Yuan TQ, Xu F, Sun RC (2013) Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process. Bioresour Technol 150:278–286

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Yi Z (2017) Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 35:466–489

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  • Zhang ZY, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381

    Article  CAS  Google Scholar 

  • Zhao XB, Cheng K, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  PubMed  Google Scholar 

  • Zhao XB, Li SM, Wu RC, Liu DH (2017) Organosolv fractionating pretreatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11:567–590

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 31870559 and 31300495), Fujian Provincial Department of Science and Technology (2018J01590; 2019J01387) and Scientific and Technological Innovation Funding of Fujian Agriculture and Forestry University (CXZX2017034, CXZX2017293, CXZX2017374, and CXZX2018004). We also thank Prof. Nairong Chen (FAFU, China) for providing the DSP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huichao Hu or Xiaolin Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, H., Gong, Z. et al. Near-complete removal of non-cellulosic components from bamboo by 1-pentanol induced organosolv pretreatment under mild conditions for robust cellulose enzymatic hydrolysis. Cellulose 26, 3801–3814 (2019). https://doi.org/10.1007/s10570-019-02334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02334-y

Keywords

Navigation