Skip to main content
Log in

Surface modification of banana fibers using organosilanes: an IGC insight

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Banana fibers are an agricultural waste material with a great exploitation potential due to their cellulose-rich content. Raw banana fibers (RBF) were treated with 3-aminopropyltriethoxy silane and glycidoxypropyltrimethoxy silane to improve the inherent limitations of banana fibers, namely its poor cell adhesion. The fibers’ modification was evaluated by inverse gas chromatography (IGC). Similar γ d s values were observed between the RBF and silane-treated fibers (39–41 mJ/m2), which indicates similar reactivity towards apolar probes. However, the decrease in the entropic parameter indicates the silane covalent bonding with the cellulose chains making a stiffer structure. Organosilane grafting was confirmed by an increased basic character in the silane-treated fibers (Kb/Ka from 1.03 to 2.81). The surface morphology also changed towards higher contact area (SBET increases 6.7 times) and porosity (Dp increases up to 67%). Both morphological and functional group reactivity changes suggest that the organosilane treatment offers new opportunities for these fibers to be used as adsorbents for proteins as well as to cell adhesion. Therefore, IGC proved a simple and viable technique in the characterization of silane-treated fibers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Salah A, Belgacem M, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem M, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Biol Macromol 24:43–54

    CAS  Google Scholar 

  • Alonso E, Faria M, Ferreira A, Cordeiro N (2018) Influence of the matrix and polymerization methods on the synthesis of BC/PANi nanocomposites: an IGC study. Cellulose 25:2343–2354

    Article  CAS  Google Scholar 

  • Biazar E, Majid H, Asefnezhad A, Montazeri N (2011) The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. Int J Nanomed 6:631–639

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet P, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117

    Article  CAS  Google Scholar 

  • Cordeiro N, Faria M, Abraham E, Pothan L (2013) Assessment of the changes in the cellulosic surface of micro and nano banana fibres due to saponin treatment. Carbohydr Polym 98:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    Article  CAS  Google Scholar 

  • Dowling D, Miller I, Adhaoui M, Gallagher W (2011) Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl 26:327–347

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform—materials analysis, pp 45–68

  • Faria M, Vilela C, Silvestre AJD, Deepa B, Resnike M, Freire CSR, Cordeiro N (2019) Physicochemical surface properties of bacterial cellulose/polymethacrylate nanocomposites: an approach by inverse gas chromatography. Carbohydr Polym 206:86–93

    Article  CAS  PubMed  Google Scholar 

  • Fernandes SCM, Sadocco P, Alonso-Varona A, Palomare T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  PubMed  Google Scholar 

  • Frone AN, Panaitescu DM, Chiulan J, Nicolae CA, Casarica A, Gabor AR, Trusca R, Damian CM, Purcar V, Alexandrescu E, Stanescu PO (2018) Surface treatment of bacterial cellulose in mild, eco-friendly conditions. Coatings 8:221

    Article  CAS  Google Scholar 

  • Goss K (1997) Considerations about the adsorption of organic molecules from the gas phase to surfaces: implication for inverse gas chromatography and the prediction of adsorption coefficients. J Colloid Interface Sci 190:241–249

    Article  CAS  PubMed  Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    CAS  Google Scholar 

  • Hoebbel D, Nacken M, Schmidt H (1998) A NMR study on the hydrolysis, condensation and epoxide ring-opening reaction in sols and gels of the system glycidoxypropyltrimethoxysilane-water-titaniumtetraethoxide. J Sol Gel Sci Technol 12:169–179

    Article  CAS  Google Scholar 

  • Ifuku S, Yano H (2015) Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. Int J Biol Macromol 74:428–432

    Article  CAS  PubMed  Google Scholar 

  • Jackson P, Huglin M (1995) Use of inverse gas chromatography to measure diffusion coefficients in crosslinked polymers at different temperatures. Eur Polym J 31:63–65

    Article  CAS  Google Scholar 

  • Khanjanzadeh H, Behrooz R, Bahramifar N, Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Mills R, Gardner D, Wimmer R (2008) Inverse gas chromatography for determining the dispersive surface free energy and acid-base interactions of sheet molding compound—part II 14 ligno-cellulosic fiber types for possible composite reinforcement. J Appl Polym Sci 110:3880–3888

    Article  CAS  Google Scholar 

  • Mohd NH, Ismail NFH, Zahari JI, Fathilah WFW, Kargarzadeh H, Ramli S, Ahmad I, Yarmo MA, Othaman R (2016) Effect of aminosilane modification on nanocrystalline cellulose properties. J Nanomater. Article ID 4804271, 8 p

  • Oss V (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic system. Chem Rev 88:927–941

    Article  Google Scholar 

  • Pujiasih S, Masykura A, Kusumaningsih T, Saputra OA (2018) Silylation and characterization of microcrystalline cellulose isolated from indonesian native oil palm empty fruit bunch. Carbohydr Polym 184:74–81

    Article  CAS  PubMed  Google Scholar 

  • Robles E, Csóka L, Labidi J (2018) Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 8:139

    Article  CAS  Google Scholar 

  • Salon M, Abdelmouleh M, Boufi S, Belgacem M, Gandini A (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci 289:249–261

    Article  CAS  PubMed  Google Scholar 

  • Salon M, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem M (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem 45:473–483

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon-fibre epoxy composites. J Adhes 23:45–60

    Article  CAS  Google Scholar 

  • Taokaew S, Phisalaphong M, Newby B (2015) Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22:2311–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013b) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013c) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013d) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014a) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93

    Article  CAS  PubMed  Google Scholar 

  • Thakur MK, Gupta RK, Thakur VK (2014b) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855

    Article  CAS  PubMed  Google Scholar 

  • Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4:1–17

    Article  CAS  Google Scholar 

  • Thielmann F (2004) Introduction into the characterization of porous materials by inverse gas chromatography. J Chromatogr A 1037:115–123

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Hill C, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A 41:806–819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National program for Scientific Equipment Renewal, POCI 2010, for sponsoring IGC work (FEDER and Foundation for Science and Technology). The Indian authors would like to thank the Department of Science and Technology, New Delhi for the financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nereida Cordeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, E., Pothan, L.A., Ferreira, A. et al. Surface modification of banana fibers using organosilanes: an IGC insight. Cellulose 26, 3643–3654 (2019). https://doi.org/10.1007/s10570-019-02329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02329-9

Keywords

Navigation