Skip to main content
Log in

Preparation of oxidized celluloses in a TEMPO/NaBr system using different chlorine reagents in water

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Three chlorine reagents (NaClO solution, solid sodium dichloroisocyanurate (NaDCC), and solid NaClO·5H2O) were used as primary oxidants in the TEMPO/NaBr oxidation of wood cellulose in water. The active chlorine content of NaDCC was stable during storage, while that of NaClO solution decreased by 20% after storage in a tightly closed bottle for 1 year. As NaClO·5H2O has a melting point of ~ 25 °C, solid NaDCC was favored for use in laboratory experiments among the three chlorine reagents. TEMPO-oxidized celluloses prepared from wood cellulose using the three different chlorine reagents (10 mmol/g-cellulose) in water at pH 10 showed no significant differences in weight recovery ratio, carboxylate content, or viscosity-average degree of polymerization (DPv). When TEMPO/NaBr/NaDCC oxidation was applied to wood cellulose in water at pH 9, the weight recovery ratio and DPv of the oxidized cellulose were clearly higher than those prepared with the three chlorine reagents in water at pH 10, and the carboxylate content was 1.6 mmol/g when the amount of NaDCC added was 5 mmol/g-cellulose. Therefore, it was possible to prepare TEMPO-oxidized celluloses with higher weight recovery ratios, higher DPv values, and similar carboxylate contents using NaDCC. Furthermore, adding NaDCC to the wood cellulose slurry in one portion did not increase the reaction mixture pH. These results showed that using NaDCC as primary oxidant in the TEMPO/NaBr oxidation of wood cellulose in water at pH 9 was advantageous compared using all three chlorine reagents in water at pH 10.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asawa T, Sugiyama Y, Kobayashi Y (2016) The placing of crystalline sodium hypochlorite pentahydrate on the market. J Ion Exch 27:42–46

    Article  Google Scholar 

  • Bailey WF, Bobbitt JM, Wiberg KB (2007) Mechanism of the oxidation of alcoholsby oxoammonium cations. J Org Chem 72:4504–4509

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SF, Miles GA (1979) The antibacterial properties of sodium dichloroisocyanurate and sodium hypochlorite formulations. J Appl Bacteriol 46:65–73

    Article  CAS  PubMed  Google Scholar 

  • Brady AP, Sancier KM, Sirine G (1963) Equilibria in solutions of cyanuric acid and its chlorinated derivatives. J Am Chem Soc 85:3101–3104

    Article  CAS  Google Scholar 

  • Clasen T, Edmondson P (2006) Int J Hyg Environ Health 209:173–181

    Article  CAS  PubMed  Google Scholar 

  • De Luca L, Giacomelli G, Porcheddu A (2001) A very mild and chemoselective oxidation of alcohols to carbonyl compounds. Org Lett 3:3041–3043

    Article  CAS  PubMed  Google Scholar 

  • De Luca L, Giacomelli G, Masala S, Porcheddu A (2003) Trichloroisocyanuric/TEMPO oxidation of alcohols under mild conditions: a close investigation. J Org Chem 68:4999–5001

    Article  CAS  PubMed  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98

    Article  Google Scholar 

  • Epp JB, Widlanski TS (1999) Facile preparation of nucleoside-5‘-carboxylic acids. J Org Chem 64:293–295

    Article  CAS  PubMed  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177

    Article  CAS  PubMed  Google Scholar 

  • Goldstein S, Samuni A (2007) Kinetics and mechanism of peroxyl radical reactionswith nitroxides. J Phys Chem 111:1066–1072

    Article  CAS  Google Scholar 

  • Inamochi T, FunahashiR Nakamura Y, Saito T, Isogai A (2017) Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose. Cellulose 24:4097–4101

    Article  CAS  Google Scholar 

  • Isogai A, Bergström L (2018) Preparation of cellulose nanofibers using green and sustainable chemistry. Curr Opin Green Sustain Chem 12:15–21

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011a) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011b) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431

    Article  CAS  Google Scholar 

  • Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Review: catalytic oxidation of cellulose with nitroxyl radicals underaqueous conditions. Prog Polym Sci 86:122–148

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398

    Article  CAS  Google Scholar 

  • Jiang B, Drouet E, Milas M, Rinaudo M (2000) Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr Res 327:455–461

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ye W, Liu L, Wang Z, Fan Y, Saito T, Isogai A (2017) Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromol 18:288–294

    Article  CAS  Google Scholar 

  • Kato Y, Horiguchi A, Hayashi M, Yabe A (1969) Studies on the bleaching agents of chloroisocyanuric acid series (Part 6): consideration of bleaching mechanism of potassium dichloroisocyanurate. J Home Econ Jpn 20:46–48

    Google Scholar 

  • Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y (2017) Sodium hypochlorite pentahydrate crystals (NaOCl·5H2O): a convenient and environmentally benign oxidant for organic synthesis. Org Process Res Dev 21:1925–1937

    Article  CAS  Google Scholar 

  • Kuramae R, Saito T, Isogai A (2014) TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym 85:126–133

    Article  CAS  Google Scholar 

  • Lai C, Zhang S, Sheng L, Liao S, Xi T, Zhang Z (2013) TEMPO mediated oxidation of bacterial cellulose in a bromide-free system. Colloid Polym Sci 291:2985–2992

    Article  CAS  Google Scholar 

  • Matte D, Solastiouk B, Merlin A, Deglise X (1989) Étude cinétique de la N-chloration de la diméthylamine et de la diéthylamine en phase aqueuse. Can J Chem 67:786–791

    Article  CAS  Google Scholar 

  • Okada T, Asawa T, Sugiyama Y, Kirihara M, Iwai T, Kimura Y (2014) Sodium hypochlorite pentahydrate (NaOCl·5H2O) crystals as an extra-ordinary oxidant for primary and secondary alcohols. Synlett 25:596–598

    Article  CAS  Google Scholar 

  • Okada T, Asawa T, Sugiyama Y, Iwai T, Kirihara M, Kimura Y (2016) Sodium hypochlorite pentahydrate (NaOCl·5H2O) crystals; an effective re-oxidant for TEMPO oxidation. Tetrahedron 72:2818–2827

    Article  CAS  Google Scholar 

  • Potthast A, Schiehser S, Rosenau T (2009) Oxidative modifications of cellulose in the periodate system—Reduction and beta-elimination reactions. Holzforschung 63:12–17

    Article  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849

    Article  CAS  Google Scholar 

  • Smith DK, Bampton RF, Alexander WJ (1963) Use of new solvents for evaluating chemical cellulose for the viscose process. Ind Eng Chem Process Des Dev 2:57–62

    Article  CAS  Google Scholar 

  • Takaichi S, Isogai A (2013) Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose 20:1979–1988

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234

    Article  CAS  PubMed  Google Scholar 

  • Tanaka C, Yui Y, Isogai A (2016) TEMPO-mediated oxidation of cotton cellulose fabrics with sodium dichloroisocyanurate. J Fiber Sci Technol 72:172–178

    Article  Google Scholar 

  • Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJJ, Reider PJ (1999) Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J Org Chem 64:2564–2566

    Article  CAS  Google Scholar 

  • Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromol 19:633–639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Core Research for Evolutional Science and Technology (CREST, Grant Number JPMJCR13B2) of the Japan Science and Technology Agency (JST). We thank Simon Partridge, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hondo, H., Saito, T. & Isogai, A. Preparation of oxidized celluloses in a TEMPO/NaBr system using different chlorine reagents in water. Cellulose 26, 3021–3030 (2019). https://doi.org/10.1007/s10570-019-02311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02311-5

Keyword

Navigation