Skip to main content
Log in

Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A thorough rheological study of the behavior of cellulose nanocrystals (CNC) in water was undertaken, focusing on the main characteristics of rod-like suspensions that allign under flow and can display liquid crystal behavior at rest, in at least a range of concentrations. The effect of adding a dispersing agent (gum arabic, GA) to the suspension was analyzed, and different surface treatments were also performed on the CNC using TEMPO, chloro(dodecyl)dimethylsilane and trimethoxysilyl propylmethacrylate, named as TCNC, DCNC and MCNC respectively. The CNC, TCNC and the suspensions prepared with added GA formed stable suspensions with a concentration range in which isotropic and anisotropic (self-organized) phases coexisted in equilibrium. On the other hand, the aqueous suspensions of the two silanized CNCs only displayed flow-induced ordering, with a similar type of rheological behavior to the other nanocrystal suspensions, although with obvious quantitative differences. These latter ones were not stable suspensions and precipitated after a few hours of rest. The rheological tests included steady shear, dynamic oscillations and start-up of steady shear that were performed for all the nanocrystals suspensions prepared at different concentrations. Differences observed were related to the crystals surface modifications or addition of the dispersing agent. A persistent periodic oscillation of the viscosity was measured in the start-up of steady shear tests and the periods of the oscillations were determined and related to the different types of crystals considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asada T, Muramatsu H, Watanabe R, Onogi S (1980) Rheooptical Studies of Racemic Poly(γ-Benzyl Glutamate) Liquid Crystals. Macromolecules 13(4):867–871

    Article  CAS  Google Scholar 

  • Beekmans F (1997) Rheology and changes in structure of thermotropic liquid crystalline polymers. Technische Universiteit Delft, Delft

    Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016

    Article  CAS  Google Scholar 

  • Buffa JM, Grela MA, Aranguren MI, Mucci V (2016) EPR spectroscopy applied to the study of the TEMPO mediated oxidation of nanocellulose. Carbohydr Polym 136:744–749

    Article  CAS  PubMed  Google Scholar 

  • Emerton HW, Wrist PE, Sikorski J, Woods HJ (1952) Electron-microscopy of degraded cellulose fibres. J Text Inst Trans 43(11):T563–T564

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Fuller GG, Burghardt WR (1991) Role of director tumbling in the rheology of polymer liquid crystal solutions. Macromolecules 24(9):2546–2555

    Article  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651

    Article  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575

    Article  CAS  Google Scholar 

  • Honorato-Rios C, Kuhnhold A, Bruckner JR, Dannert R, Schilling T, Lagerwall JPF (2016) Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Front Mater 3:21. https://doi.org/10.3389/fmats.2016.00021

    Article  Google Scholar 

  • Kiss G, Porter RS (1996) Rheology of concentrated solutions of poly(γ-benzyl-glutamate). J Polym Sci, Part B: Polym Phys 34(14):2271–2289

    Article  CAS  Google Scholar 

  • Kiss G, Porter RS (1998) Flow induced phenomena of lyotropic polymer liquid crystals: the negative normal force effect and bands perpendicular to shear. In: Brostow W (ed) Mechanical and thermophysical properties of polymer liquid crystals. Springer, Boston, pp 342–406

    Chapter  Google Scholar 

  • Larson RG (1990) Arrested tumbling in shearing flows of liquid crystal polymers. Macromolecules 23:3983–3992

    Article  CAS  Google Scholar 

  • Larson RG (1993) Roll-cell instabilities in shearing flows of nematic polymers. J Rheol 37:175

    Article  CAS  Google Scholar 

  • Lee HC, Brant DA (2002) Rheology of concentrated isotropic and anisotropic xanthan solutions. 1. A rodlike low molecular weight sample. Macromolecules 35(6):2212–2222

    Article  CAS  Google Scholar 

  • Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183:365–373

    Article  CAS  PubMed  Google Scholar 

  • Li J, Revol JF, Marchessault RH (1997) Effect of N-sulfonation on the colloidal and liquid crystal behavior of chitin crystallites. J Colloid Interface Sci 192(2):447–457

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84(1):316–322

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633

    Article  CAS  Google Scholar 

  • Marcovich NE, Reboredo MM, Aranguren MI (2001) Modified woodflour as thermoset fillers II. Thermal degradation of woodflours and composites. Thermochim Acta 372(1–2):45–57

    Article  CAS  Google Scholar 

  • Menzel AM (2015) Tuned, driven, and active soft matter. Phys Rep 554:1–45

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • Mewis J, Mortier M, Vermant J, Moldenaers P (1997) Experimental evidence for the existence of a wagging regime in polymeric liquid crystals. Macromolecules 30(5):1323–1328

    Article  CAS  Google Scholar 

  • Moldenaers P, Mewis J (1990) Relaxational phenomena and anisotropy in lyotropic polymeric liquid-crystals. J Nonnewton Fluid Mech 34:359–374

    Article  CAS  Google Scholar 

  • Narimissa E, Rahman A, Gupta RK, Kao N, Bhattacharya S (2014) Anomalous first normal stress difference behavior of polymer nanocomposites and liquid crystalline polymer composites. Polym Eng Sci 47:21–25

    Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picken SJ, Aerts J, Doppert HL, Reuvers AJ, Northolt MG (1991) Structure and rheology of aramid solutions: transient rheological and rheooptical measurements. Macromolecules 24(6):1366–1375

    Article  CAS  Google Scholar 

  • Rahman A (2013) Rheology of thermotropic liquid crystal polymers for injection moulding. Royal Melbourne Institute of Technology

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  PubMed  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133

    Article  CAS  PubMed  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751

    Article  CAS  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  CAS  Google Scholar 

  • Vermant J, Moldenaers P, Picken SJ, Mewis J (1994) A comparison between texture and rheological behavior of lyotropic liquid-crystalline polymers during flow. J Nonnewton Fluid Mech 53:1–23

    Article  CAS  Google Scholar 

  • Walker LM, Wagner NJ, Larson RG, Mirau PA, Moldenaers P (1995) The rheology of highly concentrated PBLG solutions. J Rheol 39(5):925–952

    Article  CAS  Google Scholar 

  • Wissbrun KF (1981) Rheology of rod-like polymers in the liquid crystalline state. J Rheol 25(6):619–662

    Article  CAS  Google Scholar 

  • Xu T (2014) Inorganic nanocylinder lyotropic liquid crystals: rheology, phase behavior and film self-assembly. Ph.D. thesis, Auburn University. https://etd.auburn.edu/handle/10415/4072

  • Xu T, Davis VA (2015) Rheology and shear-induced textures of silver nanowire lyotropic liquid crystals. J Nanomater 2015:9

    Google Scholar 

  • Zakharov AV, Vakulenko AA, Thoen J (2003) Tumbling instability in a shearing nematic liquid crystal: analysis of broadband dielectric results and theoretical treatment. J Chem Phys 118(9):4253–4260

    Article  CAS  Google Scholar 

  • Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6(10):794–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from ANPCyT (PICT 162034) and UNMdP (15/G494-ING500/17). J.M. Buffa thanks CONICET for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirta I. Aranguren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffa, J.M., Casado, U., Mucci, V. et al. Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals. Cellulose 26, 2317–2332 (2019). https://doi.org/10.1007/s10570-019-02278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02278-3

Keywords

Navigation