Skip to main content
Log in

A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Developing a facile and energy-efficient separation membrane for the purification of highly emulsified oily wastewater is significant challenging due to the critical limitation of low flux, serious fouling, and a complex fabrication process. Therefore, we fabricated a superhydrophilic and underwater superoleophobic polyphenylene sulfide microfiber membrane, modified by chitosan, via a simple and facile strategy of dip-coating followed by hot pressing. The prepared membrane displays high superoleophobicity in strong acid, alkali, and salt solutions, with the oil contact angle of 150.08°, 150.46° and 151.89°, respectively. Additionally, the high porosity and diminutive pore size endow the membrane with superior performance for separating both surfactant-free and surface-stabilized oil-in-water emulsion. An ultrahigh permeation flux of up to 2250 L m−2 h−1 with a separation efficiency of > 99% is obtained driven solely by gravity. The flow rate and separation efficiency are higher than those of conventional separation membranes, demonstrating remarkable applicability for energy efficient separation. With the advantages of excellent antifouling performance and antibacterial activity, the as-prepared membrane exhibits robust reusability for long-term separation, which is promising for practical applications in the purification of oily wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Majed AA, Adebayo AR, Hossain ME (2012) A sustainable approach to controlling oil spills. J Environ Manag 113:213–227

    Article  Google Scholar 

  • Al-Sagheer FA, Merchant S (2011) Visco-elastic properties of chitosan–titania nano-composites. Carbohydr Polym 85:356–362

    Article  CAS  Google Scholar 

  • Arof AK, Morni NM, Yarmo MA (1998) Evidence of lithium–nitrogen interaction in chitosan-based films from X-ray photoelectron spectroscopy. Mater Sci Eng B 55:130–133

    Article  Google Scholar 

  • Chakraborty S, Rusli H, Nath A, Sikder J, Bhattacharjee C, Curcio S, Drioli E (2016) Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit Rev Biotechnol 36:43

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary JP, Vadodariya N, Sanna KN, Meena R (2015) Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl Mater Interf 7:24957

    Article  CAS  Google Scholar 

  • Cheryan M, Rajagopalan N (1998) Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 151:13–28

    Article  CAS  Google Scholar 

  • Dambies L, Guimon C, Yiacoumi S, Guibal E (2001) Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids Surf A Physicochem Eng Asp 177:203–214

    Article  CAS  Google Scholar 

  • Fen YW, Yunus WMM, Talib ZA (2013) Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy. Optik 124:126–133

    Article  CAS  Google Scholar 

  • Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO(2) ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Zong D, Jin Q, Yu J, Ding B (2018) Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 28:1705051

    Article  CAS  Google Scholar 

  • Haldorai Y, Shim JJ (2014) Novel chitosan—TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Polym Compos 35:327–333

    Article  CAS  Google Scholar 

  • Hu B, Scott K (2007) Influence of membrane material and corrugation and process conditions on emulsion microfiltration. J Membr Sci 294:30–39

    Article  CAS  Google Scholar 

  • Hu L, Gao S, Ding X, Wang D, Jiang J, Jin J, Jiang L (2015) Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9:4835

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2018) Polyphenylene sulfide microfiber membrane with superhydrophobicity and superoleophilicity for oil/water separation. J Mater Sci 53:13243–13252

    Article  CAS  Google Scholar 

  • Iritani E, Katagiri N, Okada K, Cao DQ, Kawasaki K (2013) Improvement of concentration performance in shaking type of freeze concentration. Sep Purif Technol 120:445–451

    Article  CAS  Google Scholar 

  • Jr MO, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128

    Article  Google Scholar 

  • Kim JY, Lee JK, Lee TS, Park WH (2003) Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. Int J Biol Macromol 32:23–27

    Article  CAS  PubMed  Google Scholar 

  • Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nat Commun 3:1025

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liu M, Chen L, Chen P, Ma J, Han D, Jiang L (2010) Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv Mater 22:4826

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Son M, Chakraborty S, Bhattacharjee C, Choi H (2013) Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment. Desalin Water Treat 51:6194–6200

    Article  CAS  Google Scholar 

  • Louette P, Bodino F, Pireaux JJ (2005) Poly(phenylene sulfide) (PPS) XPS reference core level and energy loss spectra. Surf Sci Spectra 12:169

    Article  CAS  Google Scholar 

  • Ma Y et al (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos Part B Eng 162:671–677. https://doi.org/10.1016/j.compositesb.2019.01.048

    Article  CAS  Google Scholar 

  • Mccloskey BD, Ju H, Freeman BD (2010) Composite membranes based on a selective chitosan–poly(ethylene glycol) hybrid layer: synthesis, characterization, and performance in oil–water purification. Indengchemres 49:366–373

    CAS  Google Scholar 

  • Miyagawa Y, Katsuki K, Matsuno R, Adachi S (2015) Effect of oil droplet size on activation energy for coalescence of oil droplets in an O/W emulsion. J Agric Chem Soc Jpn 79:1695–1697

    CAS  Google Scholar 

  • Mokhena TC, Luyt AS (2017) Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres. J Clean Prod 156:470–479

    Article  CAS  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar T, Trinadh M, Babu PV, Sainath AVS, Reddy AVR (2015) Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. J Membr Sci 481:82–93

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  PubMed  Google Scholar 

  • Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791

    Article  CAS  PubMed  Google Scholar 

  • Tan Y et al (2019) Synchronous enhancement and stabilization of graphene oxide liquid crystals: inductive effect of sodium alginates in different concentration zones. Polymer 160:107–114. https://doi.org/10.1016/j.polymer.2018.11.041

    Article  CAS  Google Scholar 

  • Tummons EN, Tarabara VV, Chew JW, Fane AG (2016) Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. J Membr Sci 500:211–224

    Article  CAS  Google Scholar 

  • Tummons EN, Jia WC, Fane AG, Tarabara VV (2017) Ultrafiltration of saline oil-in-water emulsions stabilized by an anionic surfactant: effect of surfactant concentration and divalent counterions. J Membr Sci 537:384–395

    Article  CAS  Google Scholar 

  • Wang X et al (2010) Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route. J Membr Sci 356:110–116

    Article  CAS  Google Scholar 

  • Wang G et al (2015) A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chem 17:3093–3099

    Article  CAS  Google Scholar 

  • Wang Y et al (2016) Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding anti-fouling property. ACS Appl Mater Interf 8:25612–25620

    Article  CAS  Google Scholar 

  • Wang Q et al (2019) Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr Polym 205:125–134. https://doi.org/10.1016/j.carbpol.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270

    Article  CAS  PubMed  Google Scholar 

  • Yong CJ, Bhushan B (2009) Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 25:14165–14173

    Article  CAS  Google Scholar 

  • Yoo SH, Jang D, Joh HI, Lee S (2017) Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue. J Mater Chem A 5:748–755

    Article  CAS  Google Scholar 

  • Yoon H, Na SH, Choi JY, Latthe SS, Swihart MT, Aldeyab SS, Yoon SS (2014) Gravity-driven hybrid membrane for oleophobic–superhydrophilic oil–water separation and water purification by graphene. Langmuir 30:11761–11769

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lu F, Tao L, Liu N, Gao C, Feng L, Wei Y (2013) Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad pH range and hyper-saline environments. Appl Mater Interf 5:11971–11976

    Article  CAS  Google Scholar 

  • Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem 53:856–860

    Article  CAS  Google Scholar 

  • Zhao W, Crandall C, Sahadevan R, Menkhaus TJ, Hao F (2017) Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 114:64–72

    Article  CAS  Google Scholar 

  • Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S (2016) Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chem Eng J 301:249–256

    Article  CAS  Google Scholar 

  • Zhu X, Dudchenko A, Gu X, Jassby D (2017) Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. J Membr Sci 529:159–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Sichuan province Science and Technology Planning project (2018JY0534), the National Science and Technology support Plan of China (2015BAE01B04), the Scientific Research Project of Education Department of Hubei Province (Q20181709), and Hubei Provincial Natural Science Foundation of China (2018CFB267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luoxin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2019_2274_MOESM1_ESM.docx

Appendix A: Supplementary material. The EDX mapping of the distribution of the varieties of elements (C, N, O, S) on the CTS-PPS microfiber membrane surface. Photographs of various oil-in-water emulsions before and after filtration. Summary of various emulsions and their composition. Summary of the properties of the oils and the TOC values of related emulsions. (DOCX 5781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, Y., Zhao, L. et al. A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation. Cellulose 26, 2599–2611 (2019). https://doi.org/10.1007/s10570-019-02274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02274-7

Keywords

Navigation