Skip to main content
Log in

Layer-layer assembly of water-based graphene for facile fabrication of sensitive strain gauges on paper

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Paper has been proposed as an alternative substrate material for graphene-based strain gauges due to its high flexibility and accessibility when compared to the conventional substrates such as polymer that is not only rigid but also not recyclable. In the fabrication of graphene-based strain gauges on paper, inkjet printing is commonly used as the main deposition method of graphene on paper as this process allows a systematic control of strain gauge resistance by manipulating several factors such as print passes and drop spacing. However, the availability of inkjet printers that allows the printing of graphene solution is an issue as industrial inkjet printers can be obtained only at a premium price while modification of commercial inkjet printers is a must to replace the original ink with graphene ink. To counter this issue, a commercial photo paper has been used for the first time as a substrate during vacuum filtration of graphene solution for layer–layer assembly of strain gauges on paper. With the resulting gauge factor of up to 83 at the maximum and minimum strain of 1.4% and 0.03% (sensitivity of 1.25%) respectively, the fabricated strain gauge from photo paper shows the potential of paper to be used as a component in the future wearable device. Meanwhile, the advantages of using vacuum filtration as the selected technique for the deposition of graphene meanwhile are demonstrated in this work by varying the gauge factor through controlling the graphene deposition volume.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Backes C et al (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323

    Article  CAS  PubMed  Google Scholar 

  • Bessonov A, Kirikova M, Haque S, Gartseev I, Bailey MJ (2014) Highly reproducible printable graphite strain gauges for flexible devices. Sens Actuators A 206:75–80

    Article  CAS  Google Scholar 

  • Bøggild P et al (2017) Mapping the electrical properties of large-area graphene. 2D Mater 4:042003

    Article  CAS  Google Scholar 

  • Boland CS et al (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Boland CS, Khan U, Binions M, Barwich S, Boland JB, Weaire D, Coleman JN (2018) Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 10:5366–5375

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Liu X, Huang J, Liu Z (2017) Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv 7:48333–48340

    Article  CAS  Google Scholar 

  • Casiraghi C et al (2018) Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129:462–467

    Article  CAS  Google Scholar 

  • Childres I, Jauregui LA, Park W, Cao H, Chen YP (2013) Raman spectroscopy of graphene and related materials. New Dev Photon Mater Res 1:1–20

    Article  Google Scholar 

  • Chun S, Choi Y, Park W (2017) All-graphene strain sensor on soft substrate. Carbon 116:753–759

    Article  CAS  Google Scholar 

  • Correia V, Caparros C, Casellas C, Francesch L, Rocha J, Lanceros-Mendez S (2013) Development of inkjet printed strain sensors. Smart Mater Struct 22:105028

    Article  CAS  Google Scholar 

  • Do TN, Visell Y (2017) Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci Repo 7:1753

    Article  CAS  Google Scholar 

  • Gullapalli H et al (2010) Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6:1641–1646

    Article  CAS  PubMed  Google Scholar 

  • Hempel M, Nezich D, Kong J, Hofmann M (2012) A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett 12:5714–5718

    Article  CAS  PubMed  Google Scholar 

  • Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF (2015) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27:109–115

    Article  CAS  PubMed  Google Scholar 

  • Ismail Z, Abdullah AH, Abidin ASZ, Yusoh K (2017a) Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film. Appl Nanosci 7:317–324

    Article  CAS  Google Scholar 

  • Ismail Z, Kassim NFA, Abdullah AH, Abidin ASZ, Ismail FS, Yusoh K (2017b) Black tea assisted exfoliation using a kitchen mixer allowing one-step production of graphene. Mater Res Express 4:075607

    Article  CAS  Google Scholar 

  • Jiang X et al (2016) Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics. Surf Coat Technol 299:22–28

    Article  CAS  Google Scholar 

  • Kang T-K (2014) Tunable piezoresistive sensors based on pencil-on-paper. Appl Phys Lett 104:073117

    Article  CAS  Google Scholar 

  • Kim K, Ahn SI, Choi KC (2014) Simultaneous synthesis and patterning of graphene electrodes by reactive inkjet printing. Carbon 66:172–177

    Article  CAS  Google Scholar 

  • Lee WP, Routh AF (2004) Why do drying films crack? Langmuir 20:9885–9888

    Article  CAS  PubMed  Google Scholar 

  • Lin C-W, Zhao Z, Kim J, Huang J (2014) Pencil drawn strain gauges and chemiresistors on paper. Sci Rep 4:3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2017a) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  CAS  Google Scholar 

  • Liu H, Jiang H, Du F, Zhang D, Li Z, Zhou H (2017b) Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem Eng 5:10538–10543

    Article  CAS  Google Scholar 

  • Liu H et al (2017c) A promising material for human-friendly functional wearable electronics. Mater Sci Eng R Rep 112:1–22. https://doi.org/10.1016/j.mser.2017.01.001

    Article  CAS  Google Scholar 

  • Overgaard MH, Kühnel M, Hvidsten R, Petersen SV, Vosch T, Nørgaard K, Laursen BW (2017) Highly conductive semitransparent graphene circuits screen-printed from water-based graphene oxide ink. Adv Mater Technol 2:1700011

    Article  CAS  Google Scholar 

  • Ozdemir O et al (2015) Improvement of the electromechanical performance of carboxymethylcellulose-based actuators by graphene nanoplatelet loading. Cellulose 22:3251–3260. https://doi.org/10.1007/s10570-015-0702-3

    Article  Google Scholar 

  • Pan M, Zhang Y, Shan C, Zhang X, Gao G, Pan B (2017) Flat graphene-enhanced electron transfer involved in redox reactions. Environ Sci Technol 51:8597–8605

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  • Park S et al (2012) The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50:4573–4578

    Article  CAS  Google Scholar 

  • Prosser JH, Brugarolas T, Lee S, Nolte AJ, Lee D (2012) Avoiding cracks in nanoparticle films. Nano Lett 12:5287–5291

    Article  CAS  PubMed  Google Scholar 

  • Retief J, Fourie P, Perold W (2018) Modified desktop inkjet printer as low-cost material deposition device. In: Biomedical engineering conference (SAIBMEC), 2018 3rd Biennial South African. IEEE, pp 1–4

  • Saha B, Baek S, Lee J (2017) Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide. ACS Appl Mater Interfaces 9:4658–4666

    Article  CAS  PubMed  Google Scholar 

  • Song N-j, Lu C-x, Chen C-m, Ma C-l, Kong Q-q (2017) Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Mater 32:221–226. https://doi.org/10.1016/S1872-5805(17)60119-7

    Article  Google Scholar 

  • Tao L-Q et al (2017a) Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 9:8266–8273

    Article  CAS  PubMed  Google Scholar 

  • Tao L-Q et al (2017b) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11:8790–8795. https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Shu Y, Cui Y-L, Mi W-T, Yang Y, Xie D, Ren T-L (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705. https://doi.org/10.1039/c3nr04521h

    Article  CAS  PubMed  Google Scholar 

  • Varrla E, Paton KR, Backes C, Harvey A, Smith RJ, McCauley J, Coleman JN (2014) Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6:11810–11819

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670. https://doi.org/10.1002/adfm.201400379

    Article  CAS  Google Scholar 

  • Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  CAS  Google Scholar 

  • Yang T et al (2017) A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens 2:967–974

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-F et al (2018) An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 10:11524–11530. https://doi.org/10.1039/c8nr02652a

    Article  CAS  PubMed  Google Scholar 

  • Yokaribas V, Wagner S, Schneider DS, Friebertshäuser P, Lemme MC, Fritzen C-P (2017) Strain gauges based on CVD graphene layers and exfoliated graphene nanoplatelets with enhanced reproducibility and scalability for large quantities. Sensors 17:2937

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Universiti Malaysia Pahang for financial support (RDU 1803134) in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulhelmi Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, Z. Layer-layer assembly of water-based graphene for facile fabrication of sensitive strain gauges on paper. Cellulose 26, 1417–1429 (2019). https://doi.org/10.1007/s10570-018-2222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2222-4

Keywords

Navigation