Skip to main content
Log in

Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein, we report a novel approach for the preparation of chitosan films with improved mechanical and barrier properties, by incorporating a mixture of nanoclays (MMT) and cellulose nanocrystals (CNC), via a water-evaporation-induced self-assembly process. The improvements obtained were assigned to: (1) the slow evaporation of water, leading to nacre-like structures; (2) a synergistic effect created between MMT and CNC. The best mechanical properties were obtained with a weight ratio MMT/CNC 1:2, which led to a significant improvement in tensile strength (+ 230%) and tensile modulus (+ 448%). In addition, the thermal stability of the films was also improved, while the water vapor and oxygen transmission rates were reduced. The improved barrier properties were attributed to the nacre-like layered structure formed by the sodium cloisite platelets within the chitosan matrix, which slowed down the diffusion of water and oxygen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdou E, Elsabee M, Elkholy S (2011) The amazing materials chitin and chitosan. Extraction, modification and blending with starch. LAP Lambert Academic, Saarbrücken. ISBN 978-3-8443-8807-7

  • Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Begin A, Van Calsteren MR (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26:63–67

    Article  CAS  PubMed  Google Scholar 

  • Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319:1069–1073

    Article  CAS  PubMed  Google Scholar 

  • Brand J, Pecastaings G, Sèbe G (2017) A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters. Carbohydr Polym 169:189–197

    Article  CAS  PubMed  Google Scholar 

  • Campaniello D, Bevilacqua A, Sinigaglia M, Corbo MR (2008) Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Wu M, Li M, Jiang L, Tang Z (2013) Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew Chem Int Ed 52:3750–3755

    Article  CAS  Google Scholar 

  • Coma V, Verestiuc L (2012) Chitosan-based antimicrobial materials to biomedical applications. In: Popa M, Ottenbritte RM, Uglea CV (eds) Medical applications of polymers. American Scientific Publishers, Valencia, pp 64–108

    Google Scholar 

  • Cussler EL, Hughes SE, Ward WJ, Aris R (1998) Barrier membranes. J Membr Sci 38:161–174

    Article  Google Scholar 

  • Dai H, Huang Y, Huang H (2018) Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanoscrystals. Cellulose 25:4623–4637

    Article  CAS  Google Scholar 

  • Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780

    Article  CAS  Google Scholar 

  • Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919

    Article  CAS  Google Scholar 

  • Divakaran R, Sivasankara Pillai VN (2001) Flocculation of kaolinite suspensions in water by chitosan. Water Res 35:3904–3908

    Article  CAS  PubMed  Google Scholar 

  • Durango AM, Soares NFF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336–341

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • El Tahlawy K (2008) Chitosan phosphate: a new way for production of eco-friendly flame-retardant cotton textiles. J Text Inst 99:185–191

    Article  CAS  Google Scholar 

  • Enescu D, Hamciuc V, Ardeleanu R, Cristea M, Ioanid A, Harabagiu V, Simionescu BC (2009a) Polydimethylsiloxane-modified chitosan. part III: preparation and characterization of hybrid membranes. Carbohydr Polym 76:268–278

    Article  CAS  Google Scholar 

  • Enescu D, Hamciuc V, Pricop L, Hamaide T, Harabagiu V, Simionescu BC (2009b) Polydimethylsiloxane-modified chitosan. Part I: synthesis and structural characterization of graft and crosslinked copolymers. J Polym Res 16:73–80

    Article  CAS  Google Scholar 

  • Enescu D, Frache F, Geobaldo F (2015) Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. R Soc Chem Adv 5:61465–61480

    CAS  Google Scholar 

  • Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  CAS  Google Scholar 

  • Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. eXPRESS Polym Lett 6:914–926

    Article  CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannelis EP (1996) Polymer-layered silicate nanocomposites. Adv Mater (Weinheim Ger) 8:29–35

    Article  CAS  Google Scholar 

  • Günister E, Pestreli D, Ünlü CH, Atici O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohydr Polym 67:358–365

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Han J, Dou Y, Yan D, Ma J, Wei M, Evans DG, Duan X (2011) Biomimetic design and assembly of organic–inorganic composite films with simultaneously enhanced strength and toughness. Chem Commun 47:5274–5276

    Article  CAS  Google Scholar 

  • Hay JN, Shaw SJ (2000) Nanocomposites—properties and applications. Abstracted from “a review of nanocomposites 2000”. Retrieved on February 13, 2005 from Azom.com at http://www.azom.com/details.asp?ArticleID=921

  • Hong SI, Lee JH, Bae HJ, Koo SY, Lee HS, Choi JH, Kim DH, Park SH, Park HJ (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119:2742–2749

    Article  CAS  Google Scholar 

  • Hu C, Deng Y, Hu D, Duan Y, Zhai K (2016) Adsorption and intercalation of low and medium molar mass chitosans on/in sodium montmorillonite. Int J Biol Macromol 92:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond Ser B 234:415–440

    Article  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  PubMed  Google Scholar 

  • Kim JT, Lee DY, Oh TS, Lee DH (2003) Characteristics of nitrile–butadiene rubber layered silicate nanocomposites with silane coupling agent. J Appl Polym Sci 89:2633–2640

    Article  CAS  Google Scholar 

  • Leceta I, Molinaro S, Guerrero P, Kerry JP, de la Caba K (2015) Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biol Technol 100:142–150

    Article  CAS  Google Scholar 

  • Li YT, Lin SB, Chen LC, Chen HH (2017) Antimicrobial activity and controlled release of nanosilvers in bacterial cellulose composites films incorporated with montmorillonites. Cellulose 24:4871–4883

    Article  CAS  Google Scholar 

  • Lin TH, Huang WH, Jun IK, Jiang P (2009) Bioinspired assembly of colloidal nanoplatelets by electric field. Chem Mater 21:2039–2044

    Article  CAS  Google Scholar 

  • Marelli B, Brenckle MA, Kaplan DL, Omenetto FG (2016) Silk fibroin as edible coating for perishable food preservation. Sci Rep 6:25263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussout H, Ahlafi H, Aazza M, Sekkate C (2018) Kinetic and mechanism studies of the isothermal degradation of local chitin, chitosan and its biocomposite bentonite/chitosan. Cellulose 25:5593–5609

    Article  CAS  Google Scholar 

  • NF ISO 2528 (2001) Produits en feuilles - détermination du coefficient de transmission de la vapeur d’eau - Méthode (de la capsule) par gravimétrie

  • Oguzlu H, Tihminlioglu F (2010) Preparation and barrier properties of chitosan layered silicate nanocomposite films. Macromol Symp 298:91–98

    Article  CAS  Google Scholar 

  • Ou CY, Li SD, Yang L, Li CP, Hong PZ, She XD (2010) The impact of cupric ion on thermo-oxidative degradation of chitosan. Polym Int 59:1110–1115

    CAS  Google Scholar 

  • Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76:578–584

    Article  CAS  Google Scholar 

  • Priolo MA, Gamboa D, Grunlan JC (2010) Transparent clay-polymer nano brick wall assemblies with tailorable oxygen barrier. ACS Appl Mater Interfaces 2:312–320

    Article  CAS  Google Scholar 

  • Priolo MA, Holder KM, Greenlee SM, Grunlan JC (2012) Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick wall thin films. ACS Appl Mater Interfaces 4:5529–5533

    Article  CAS  PubMed  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effects of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Roussy J, Van Vooren M, Dempsey BA, Guibal E (2005) Influence of chitosan characteristics on the coagulation and the floculation of bentonite suspensions. Water Res 39:3247–3258

    Article  CAS  PubMed  Google Scholar 

  • Salahuddin N, Moet A, Hiltner A, Baer E (2002) Nanoscale highly filled epoxy nanocomposite. Eur Polym J 38:1477–1482

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lopez-Robio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21:528–536

    Article  CAS  Google Scholar 

  • Shafizadef F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305

    Article  Google Scholar 

  • Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL (2012) Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophile T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, Rijeka, pp 43–62

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations. Compos Sci Technol 68:2917–2921

    Article  CAS  Google Scholar 

  • Tortora M, Vittoria V, Galli G, Ritrovati S, Chiellini E (2002) Transport properties of modified montmorillonite-poly(ε-caprolactone) nanocomposites. Macromol Mater Eng 287:243–249

    Article  CAS  Google Scholar 

  • Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90:123–131

    Article  CAS  Google Scholar 

  • Wang J, Cheng Q, Lin L, Chen L, Jiang L (2013) Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5:6356–6362

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cheng Q, Lin L, Jiang L (2014) Synergistic toughening of bioinspired poly(vinyl alcohol) clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guo J, Xu D, Cai J, Qiu Y, Ren J, Chang L (2015) Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose 22:3799–3810

    Article  CAS  Google Scholar 

  • Wang J, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai Z (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    Article  CAS  Google Scholar 

  • Yadav M, Ahmad S (2015) Montmorillonite/grapheme oxide/chitosan composite: synthesis, characterization and properties. Int J Biol Macromol 79:923–933

    Article  CAS  PubMed  Google Scholar 

  • Yao HB, Tan ZH, Fang HY, Yu SH (2010) Artificial nacre-like bionanocomposite films form the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew Chem Int Ed 49:10127–10131

    Article  CAS  Google Scholar 

  • Yoshida CMP, Maciel VBV, Mendonca MED, Franco TT (2014) Chitosan biobased and intelligent films: monitoring pH variations. LWT Food Sci Technol 55:83–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude towards PLACAMAT (France) for SEM analysis, towards Vincent Baylac (Université Paul Sabatier, Toulouse, France) for OTR measurements and towards Eric Lebraud (ICMCB, University of Bordeaux, France) for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Enescu, Gilles Sèbe or Véronique Coma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enescu, D., Gardrat, C., Cramail, H. et al. Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose 26, 2389–2401 (2019). https://doi.org/10.1007/s10570-018-2211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2211-7

Keywords

Navigation