Skip to main content
Log in

Mechanochemistry of cellulose

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Mechanochemistry is a rapidly developing field in organic chemistry and materials processing. Its application to cellulose has not been abundant, but is giving rise to important discoveries after ca. 2010. Here the works on mechanochemical processing of cellulose and related substances are reviewed under classification of reaction types: saccharification, esterification, radical reactions, decrystallization/nano-dispersion. Historical development in each topic is tabulated. Special emphasis is laid on solid-state milling by ball mill/attritor. Notable recent findings are briefly commented. Potential of mechanical devices is discussed. 82 references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced from Hick et al. (2010) with permission

Fig. 2

Reproduced from Käldström et al. (2014) with permission

Fig. 3

Reproduced from Dornath et al. (2015) with permission

Fig. 4

Reproduced from Huang et al. (2012) with permission

Fig. 5

Reproduced from Ago et al. (2007) with permission

Fig. 6

Reproduced from Zhao et al. (2016b) with permission

Fig. 7

Reproduced from Zhao et al. (2016a) with permission

Similar content being viewed by others

Notes

  1. Another important cellulose ester is nitrate, but challenge for it is not endorsed for its intrinsic hazard.

References

  • Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167

    Article  CAS  Google Scholar 

  • Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441

    Article  CAS  Google Scholar 

  • Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J, Delogu F, Dutková E, Gaffet E, Gotor F, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  CAS  PubMed  Google Scholar 

  • Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1984) Crystallization of amorphous cellulose. Text Res J 54:732–735

    Article  Google Scholar 

  • Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1986) Recrystallization of cellulose. Text Res J 56:509–511

    Article  Google Scholar 

  • Breiby DW, Sølling TI, Bunk O, Nyberg RB, Norrman K, Nielsen MM (2005) Structural surprises in friction-deposited films of poly(tetrafluoroethylene). Macromolecules 38:2383–2390

    Article  CAS  Google Scholar 

  • Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141

    Article  CAS  Google Scholar 

  • Calka A, Radlinski AP (1991) Universal high performance ball-milling device and its application for mechanical alloying. Mater Sci Eng A 134:1350–1353

    Article  Google Scholar 

  • Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. TAPPI 52:1361–1366

    CAS  Google Scholar 

  • Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–775

    Article  CAS  Google Scholar 

  • Fokina EL, Budim NI, Kochnev VG, Chernik GG (2004) Planetary mills of periodic and continuous action. J Mater Sci 39:5217–5221

    Article  CAS  Google Scholar 

  • Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510

    Article  CAS  PubMed  Google Scholar 

  • Furcht PW, Silla H (1990) Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol Bioeng 35:630–645

    Article  CAS  PubMed  Google Scholar 

  • Gaffet E et al (1999) Some recent developments in mechanical activation and mechanosynthesis. J Mater Chem 9:305–314

    Article  CAS  Google Scholar 

  • Gan T, Zhang Y, Su Y, Hu H, Huang H, Huang Z, Chen D, Yang M, Wu J (2017) Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24:5371–5387

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1949) Change in crystallinity upon heterogeneous acid hydrolysis of cellulose fibers. J Polym Sci 4:317–322

    Article  CAS  Google Scholar 

  • Hess K, Kiessig H, Gundermann J (1941) Röntgenographische und elektronenmikroskopische. Z Phys Chem 49B:64–82

    Google Scholar 

  • Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474

    Article  CAS  Google Scholar 

  • Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96

    Article  CAS  Google Scholar 

  • Hon DN-S (1979) Formation and behavior of mechanoradicals in pulp cellulose. J Appl Polym Sci 23:1487–1499

    Article  CAS  Google Scholar 

  • Hon DN-S (1980) On the reactivity of cellulose free radicals in graft copolymerization reactions. J Polym Sci A-Polym Chem 18:1857–1869

    Article  CAS  Google Scholar 

  • Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1:313–322

    Article  CAS  Google Scholar 

  • Hu H et al (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662

    Article  CAS  Google Scholar 

  • Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2015) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178

    Article  CAS  Google Scholar 

  • James SL et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  PubMed  Google Scholar 

  • Jones EO, Lee JM (1988) Kinetic analysis of bioconversion of cellulose in attrition bioreactor. Biotechnol Bioeng 31:35–40

    Article  CAS  PubMed  Google Scholar 

  • Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16:3528–3538

    Article  Google Scholar 

  • Kaneniwa N, Ikekawa A (1972) Influence of ball-milling atmosphere on decrease of molecular weight of polyvinylpyrrolidone powders. Chem Pharm Bull 20:1536–1543

    Article  CAS  Google Scholar 

  • Kaufman Rechulski MD, Käldström M, Richter U, Schüth F, Rinaldi R (2015) Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind Eng Chem Res 54:4581–4592

    Article  CAS  Google Scholar 

  • Kaupp G (2005) Organic solid-state reactions with 100% Yield. In: Toda F (ed) Organic solid state reactions. Springer, Berlin, pp 95–183

    Chapter  Google Scholar 

  • Kaupp G (2006) Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm 8:794–804

    Article  CAS  Google Scholar 

  • Kaupp G, Schmeyers J, Naimi-Jamal MR, Zoz H, Ren H (2002) Reactive milling with the Simoloyer®: environmentally benign quantitative reactions without solvents and wastes. Chem Eng Sci 57:763–765

    Article  CAS  Google Scholar 

  • Kelsey RG, Shafizadeh F (1980) Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnol Bioeng 22:1025–1036

    Article  CAS  Google Scholar 

  • Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166

    Article  CAS  Google Scholar 

  • Kuzuya M, Yamauchi Y, S-i Kondo (1999) Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B 103:8051–8059

    Article  CAS  Google Scholar 

  • Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015a) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619

    Article  CAS  Google Scholar 

  • Lu Q-l, Li X-y, Tang L-r, Lu B-l, Huang B (2015b) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204

    Article  CAS  Google Scholar 

  • Mais U, Esteghlalian AR, Saddler JN, Mansfield SD (2002) Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98:815–832

    Article  PubMed  Google Scholar 

  • May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    Article  CAS  PubMed  Google Scholar 

  • Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1449–1454

    Article  CAS  PubMed  Google Scholar 

  • Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly(isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26:1383–1390

    Article  CAS  Google Scholar 

  • Murata Y, Han A, Komatsu K (2003) Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett 44:8199–8201

    Article  CAS  Google Scholar 

  • Nakagawa YS et al (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849

    Article  CAS  Google Scholar 

  • Neilson MJ, Kelsey RG, Shafizadeh F (1982) Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnol Bioeng 24:293–304

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Zhang X, He X, Zhao J, Zhang W, Lu C (2015) Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. Int J Biol Macromol 72:855–861

    Article  CAS  PubMed  Google Scholar 

  • Ott RL (1964) Mechanism of the mechanical degradation of cellulose. J Polym Sci A: Gen Pap 2:973–982

    Google Scholar 

  • Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709

    Article  CAS  Google Scholar 

  • Qi X, Yang G, Jing M, Fu Q, Chiu F-C (2014) Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J Mater Chem A 2:20393–20401

    Article  CAS  Google Scholar 

  • Qiu W, Zhang F, Endo T, Hirotsu T (2004) Milling-induced esterification between cellulose and maleated polypropylene. J Appl Polym Sci 91:1703–1709

    Article  CAS  Google Scholar 

  • Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348

    Article  CAS  Google Scholar 

  • Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon–carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233

    Article  CAS  Google Scholar 

  • Ryu SK, Lee JM (1983) Bioconversion of waste cellulose by using an attrition bioreactor. Biotechnol Bioeng 25:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M et al (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nano cellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263

    Article  CAS  Google Scholar 

  • Schmidt R, Fuhrmann S, Wondraczek L, Stolle A (2016) Influence of reaction parameters on the depolymerization of H2SO4-impregnated cellulose in planetary ball mills. Powder Technol 288:123–131

    Article  CAS  Google Scholar 

  • Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30

    Article  CAS  Google Scholar 

  • Senna M (2010) The promising aspects of processing nanomaterials under mechanical stressing for physicochemical viewpoints. Adva Powder Technol 21:586–591

    Article  CAS  Google Scholar 

  • Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15:2761–2768

    Article  CAS  Google Scholar 

  • Shrotri A, Kobayashi H, Fukuoka A (2016) Mechanochemical synthesis of a carboxylated carbon catalyst and its application in cellulose hydrolysis. ChemCatChem 8:1059–1064

    Article  CAS  Google Scholar 

  • Sirviö J, Liimatainen H, Niinimäki J, Hormi O (2011) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265

    Article  CAS  Google Scholar 

  • Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224

    Article  CAS  Google Scholar 

  • Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22

    Article  CAS  Google Scholar 

  • Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478

    Article  CAS  Google Scholar 

  • Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373

    Article  CAS  Google Scholar 

  • Tjerneld F, Persson I, Lee JM (1991) Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system. Biotechnol Bioeng 37:876–882

    Article  CAS  PubMed  Google Scholar 

  • Toda F, Yagi M, Kiyoshige K (1988) Baeyer–Villiger reaction in the solid state. J Chem Soc-Chem Commun 14:958–959

    Article  Google Scholar 

  • Toda F, Kiyoshige K, Yagi M (1989) NaBH4 reduction of ketones in the solid state. Angew Chem Int Ed 28:320–321

    Article  Google Scholar 

  • Toda F, Tanaka K, Hamai K (1990) Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereoselectivity. J Chem Soc-Perkin Trans 1:3207–3209

    Article  Google Scholar 

  • Wang G-W (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700

    Article  CAS  PubMed  Google Scholar 

  • Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C-120. Nature 387:583–586

    Article  CAS  Google Scholar 

  • Wu Z-H, Sumimoto M, Tanaka H (1995) Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. J Wood Chem Technol 15:27–42

    Article  CAS  Google Scholar 

  • Xing H, Yaylayan VA (2018) Mechanochemical depolymerization of inulin. Carbohydr Res 460:14–18

    Article  CAS  PubMed  Google Scholar 

  • Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312–2317

    Article  CAS  Google Scholar 

  • Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Li W, Qi Z, Liu S (2006) Solvent-free synthesis of cellulose acetate by solid superacid catalysis. J Polym Res 13:375–378

    Article  CAS  Google Scholar 

  • Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Qiu W, Yang L, Endo T, Hirotsu T (2002) Mechanochemical preparation and properties of a cellulose–polyethylene composite. J Mater Chem 12:24–26

    Article  CAS  Google Scholar 

  • Zhang W, Li C, Liang M, Geng Y, Lu C (2010) Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution. J Hazard Mater 181:468–473

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20:807–811

    Article  CAS  Google Scholar 

  • Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016a) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818

    Article  CAS  Google Scholar 

  • Zhao M, Kuga S, Wu M, Huang Y (2016b) Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chem 18:3006–3012

    Article  CAS  Google Scholar 

  • Zoz H, Ernst D, Reichardt R, Ren H, Mizutani T, Nishida M, Okouchi H (1999) Simoloyer CM100s: semi-continuous mechanical alloying on a production scale using cycle operation-Part II. Mater Manuf Process 14:861–874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible through collaboration with Pei Huang, Peipei Sun, Mengmeng Zhao, and other students at Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing. The work was supported by the National Natural Science Foundation of China (Nos. 51733009, 51472253, 51373191 and 51043003). We thank Ms. Feixue Lu for support in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Kuga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuga, S., Wu, M. Mechanochemistry of cellulose. Cellulose 26, 215–225 (2019). https://doi.org/10.1007/s10570-018-2197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2197-1

Keywords

Navigation