Skip to main content
Log in

Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Catalytic oxidation using N-oxyl radicals in water at pH 10 was applied to wood cellulose to determine the influence of different N-oxyl radical chemical structures on the reaction kinetics and structures of oxidized celluloses. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 2-azaadamantane N-oxyl (AZADO), 1-methyl-AZADO (1-Me-AZADO), 9-azanoradamantane N-oxyl (Nor-AZADO), and 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO) were used as oxidation catalysts in a NaBr/NaClO system in water at room temperature and pH 10. The reaction time required for complete oxidation of wood cellulose by 5 mmol/g of NaClO using AZADO, 1-Me-AZADO, or Nor-AZADO was less than 20 min, while DMN-AZADO and TEMPO required 70 min and 120 min, respectively. The sodium carboxylate contents of the oxidized celluloses prepared using TEMPO and DMN-AZADO were 1.41 and 1.45 mmol/g, respectively, which were higher than those of oxidized celluloses prepared using other AZADO derivatives. The original cellulose I crystal structure, crystallinity, and crystal size of wood cellulose were mostly maintained in all oxidized celluloses, with oxidation selectively occurring at C6–OH groups on the crystalline cellulose microfibril surfaces. Oxidized celluloses prepared using DMN-AZADO and post-reduced with NaBH4 showed high carboxylate contents of ~ 1.41 mmol/g and the heist viscosity-average degrees of polymerization of ~ 800.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Battista QA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  CAS  Google Scholar 

  • Coseri S (2017) Cellulose: to depolymerize… or not to? Biotechnol Adv 35:251–266

    Article  CAS  PubMed  Google Scholar 

  • de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98

    Article  Google Scholar 

  • Doi R, Shibuya M, Murayama T, Yamamoto Y, Iwabuchi Y (2015) Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols. J Org Chem 80:401–413

    Article  CAS  PubMed  Google Scholar 

  • Einfeldt L, Günther W, Klemm D, Heublein B (2005) Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose 12:15–24

    Article  CAS  Google Scholar 

  • Funahashi R, Ono Y, Tanaka R, Yokoi M, Daido K, Inamochi T, Saito T, Horikawa Y, Isogai A (2018) Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: formation mechanism of disordered regions along each cellulose microfibril. Int J Biol Macromol 109:914–920

    Article  CAS  PubMed  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Hayashi M, Sasano Y, Nagasawa S (2011) 9-Azanoradamantane N-oxyl (Nor-AZADO): a highly active organocatalyst for alcohol oxidation. Chem Pharm Bull 59:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672

    Article  CAS  Google Scholar 

  • Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575

    Article  CAS  PubMed  Google Scholar 

  • Inamochi T, FunahashiR NY, Saito T, Isogai A (2017) Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose. Cellulose 24:4097–4101

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459

    Article  CAS  Google Scholar 

  • Isogai A, Bergström L (2018) Preparation of cellulose nanofibers using green and sustainable chemistry. Curr Opin Green Sustain Chem 12:15–21

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 86:122–148

    Article  CAS  Google Scholar 

  • Iwabuchi Y (2008) Exploration and exploitation of synthetic use of oxoammonium ions in alcohol oxidation. J Synth Org Chem Jpn 66:1076–1084

    Article  CAS  Google Scholar 

  • Iwabuchi Y (2013) Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation. Chem Pharm Bull 61:1197–1213

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398

    Article  CAS  Google Scholar 

  • Potthast A, Schiehser S, Rosenau T (2009) Oxidative modifications of cellulose in the periodate system—reduction and beta-elimination reactions. Holzforschung 63:12–17

    Article  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Sang X, Qin C, Tong Z, Kong S, Jia Z, Wan G, Liu X (2017) Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24:2415–2425

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Shibuya M, Tomizawa M, Suzuki I, Iwabuchi Y (2006) 2-Azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols. J Am Chem Soc 128:8412–8413

    Article  CAS  PubMed  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Isogai A (2013) Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose 20:1979–1988

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules 19:633–639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Core Research for Evolutional Science and Technology (CREST, Grant Number JPMJCR13B2) of the Japan Science and Technology Agency (JST). We thank Simon Partridge, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hondo, H., Saito, T. & Isogai, A. Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10. Cellulose 26, 1479–1487 (2019). https://doi.org/10.1007/s10570-018-2177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2177-5

Keywords

Navigation