Skip to main content
Log in

A novel method to prepare lignocellulose nanofibrils directly from bamboo chips

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocelluloses, including cellulose nanocrystals (CNCs), bacterial nanocellulose (BNC), and cellulose nanofibrils (CNFs), have attracted much attention in recent years all over the world. However, commercial applications of nanocelluloses are still limited due to the high cost of nanocelluloses. In this study, we developed a novel method to prepare lignocellulose nanofibrils (LCNF) directly from bamboo chips (BC), which can readily be scaled up. The method developed consists of three primary steps, which are as follows: glycerol pretreatment, screw extrusion, and mechanical refining/milling in a colloid mill. Glycerol can readily penetrate into bamboo chips and it is used as an effective reaction medium for fibrillation and delignification. The LCNF yield is about 77.2% based on bone dry bamboo chips. The morphology of the LCNF was investigated by transmission electron microscopy (TEM), which shows that the LCNFs have a diameter of 20–80 nm and a length of several thousand nanometers. X-ray diffraction (XRD) analysis shows that the crystallinity of the LCNF was 52.7%, which was slightly lower than that of the bamboo raw material. This process can be easily scaled up for commercial production of LCNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Khalil HP, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  CAS  PubMed  Google Scholar 

  • Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • An X, Wen Y, Cheng D et al (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23:2409–2420

    Article  CAS  Google Scholar 

  • Baker AA, Helbert W, Sugiyama J, Miles MJ (1997) High-resolution atomic force microscopy of native valonia cellulose I microcrystals. J Struct Biol 119:129–138

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y et al (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461

    Article  CAS  Google Scholar 

  • Chen W, Abe K, Uetani K et al (2014) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528. https://doi.org/10.1007/s10570-014-0172-z

    Article  CAS  Google Scholar 

  • Demirba A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63:179–185

    Article  Google Scholar 

  • Fan J, Li T, Ren Y et al (2017) Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind Crops Prod 97:417–424. https://doi.org/10.1016/j.indcrop.2016.12.048

    Article  CAS  Google Scholar 

  • Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  Google Scholar 

  • Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  • Iwamoto S, Yamamoto S, Lee S-H et al (2014) Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7:6919–6929

    Article  Google Scholar 

  • Jahan MS, Mun SP (2009) Studies on the macromolecular components of nonwood available in Bangladesh. Ind Crops Prod 30:344–350

    Article  CAS  Google Scholar 

  • Jang J-H, Lee S-H, Kim N-H (2014) Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. J Korean Wood Sci Technol 42:700–707

    Article  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  • Khan A, Wen Y, Huq T, Ni Y (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19. https://doi.org/10.1021/acs.jafc.7b04204

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhao X, Liu S (2013) Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydr Polym 94:278–285

    Article  CAS  Google Scholar 

  • Li H, Zhang H, Li J, Du F (2014) Comparison of interfiber bonding ability of different poplar P-RC alkaline peroxide mechanical pulp (APMP) fiber fractions. BioResources 9:6019–6027

    Google Scholar 

  • Liu C, van der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:97

    Article  CAS  Google Scholar 

  • Liu C, Wang G, Sui W et al (2017) Preparation and characterization of chitosan by a novel deacetylation approach using glycerol as green reaction solvent. ACS Sustain Chem Eng 5:4690–4698. https://doi.org/10.1021/acssuschemeng.7b00050

    Article  CAS  Google Scholar 

  • Liu H, Pang B, Zhao Y et al (2018) Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221:21–27

    Article  CAS  Google Scholar 

  • Martin C, Puls J, Saake B, Schreiber A (2011) Effect of glycerol pretreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cellul Chem Technol 45:487

    CAS  Google Scholar 

  • Meighan BN, Lima DRS, Cardoso WJ et al (2017) Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Ind Crops Prod 108:431–441

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB et al (2013) Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: optimization and modeling. Ind Eng Chem Res 52:14342–14352

    Article  Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8

    Article  CAS  Google Scholar 

  • Sánchez R, Espinosa E, Domínguez-Robles J et al (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211. https://doi.org/10.1126/science.1102765

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161

    Article  CAS  Google Scholar 

  • Sun B, Hou Q, He Z et al (2014) Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr Polym 111:419–424

    Article  CAS  Google Scholar 

  • Theng D, Arbat G, Delgado-Aguilar M et al (2015) All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind Crops Prod 76:166–173

    Article  CAS  Google Scholar 

  • Wang J-P, Chen Y-Z, Yuan S-J et al (2009) Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43:5267–5275

    Article  CAS  Google Scholar 

  • Xu EC, Sabourin MJ (1999) Evaluation of APMP and BCTMP for market pulps from South American eucalyptus. Tappi J 82

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737

    Article  CAS  Google Scholar 

  • Yousefi H, Azari V, Khazaeian A (2018) Direct mechanical production of wood nanofibers from raw wood microparticles with no chemical treatment. Ind Crops Prod 115:26–31

    Article  CAS  Google Scholar 

  • Zhang Z, Harrison MD, Rackemann DW et al (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381

    Article  Google Scholar 

  • Zhang L, Lu H, Yu J et al (2017) Dissolution of lignocelluloses with a high lignin content in a N-methylmorpholine-N-oxide monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65:9587–9594. https://doi.org/10.1021/acs.jafc.7b03429

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhou X, Ma J, Liu X (2013) Preparation and characterization of novel regenerated cellulose films via sol–gel technology. Ind Eng Chem Res 52:17900–17906

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Natural Science Foundation of Jiangsu Provincial University (16KJA220005), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17-0835), the Doctorate Fellowship Foundation of Nanjing Forestry University, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofan Zhou or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, L., Liu, C. et al. A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose 25, 7043–7051 (2018). https://doi.org/10.1007/s10570-018-2067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2067-x

Keywords

Navigation