Skip to main content
Log in

Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Delignified fibres from E. benthamii, E. nitens and E. smithii were treated with different NaOH concentrations (up to 30%, w/v) at two different temperatures (25 °C and 80 °C) to investigate the polymorphic and morphological variations in cellulose. The results showed that de-crystallization and the polymorphic transformation of cellulose started at 10% (w/v) NaOH. At 10% (w/v) NaOH, the cellulose II content was similar among the samples from the different species, but changes were observed in the cellulose I content and amorphous fraction. Alkalization at 25 °C had a higher de-crystallization effect than that at 80 °C. E. benthamii showed the highest cristallinity index values and E. nitens the lowest. The crystallite size of cellulose I (L(200)) increased as the NaOH concentration increased, while the temperature seemed to not have a significant influence on the L(200) variation. E. benthamii showed the highest L(200) (3.5–5.0 nm) while E. nitens showed the lowest (3.3–4.5 nm). The crystallite size of cellulose II (L(020)) was higher (4.8–5.2 nm) than that of cellulose I L(200) (3.3–5.0 nm). Alkalization at a higher temperature resulted in a higher cellulose II L(020). Morphologically, at a 0.5% NaOH concentration, the fibres were embedded in a gel-like substance, and, with the NaOH concentration above 10%, the fibres were converted into a swollen and roughened state. Thus, different Eucalyptus species at given NaOH concentrations displayed different structural features, which could lead to procedures and products with different requirements towards the manufacturing of cellulose derivatives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984

    Article  CAS  Google Scholar 

  • Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod 65:565–571

    Article  CAS  Google Scholar 

  • Barneto AG, Hernández RB, Berenguer JM (2011) Thermogravimetric characterization of Eucalyptus wood. O Pap. 72:53–56

    CAS  Google Scholar 

  • Borysiak S, Doczekalska B (2005) X-ray diffraction study of Pine wood treated with NaOH. Fibres Text East Eur 13:87–89

    CAS  Google Scholar 

  • Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supramolecular structure of cellulose fibres after mercerization. Fibres Text East Eur 11:104–106

    Google Scholar 

  • Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–1029

    Article  CAS  Google Scholar 

  • Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compost 46:119–136

    Article  CAS  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17:3941–3947

    Article  CAS  Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854

    Article  CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. Wood chemistry and wood biotechnology, vol 1. GmbH & Co.KG, Berlin

    Book  Google Scholar 

  • El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86:1221–1229

    Article  Google Scholar 

  • El Oudiani A, Caabouni Y, Msahli S, Sakli F (2012) Mercerization of Agave americana L. fibers. J Text I 103:565–574

    Article  Google Scholar 

  • Fengel D, Strobel C (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose I. Acta Polym 45:319–324

    Article  CAS  Google Scholar 

  • Fink HP, Hoffmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromol 13:645–651

    Article  CAS  Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18:479–491

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jiao C, Xiong J (2014) Accessibility and morphology of cellulose fibres treated with sodium hydroxide. BioResources 9:6504–6513

    Article  Google Scholar 

  • Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335

    Article  CAS  Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684

    Article  CAS  Google Scholar 

  • Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH-water. Cellulose 17:31–45

    Article  Google Scholar 

  • Lee MH, Park HS, Yoon KJ, Hauser PJ (2004) Enhancing the durability of linen-like properties of low temperature mercerized cotton. Text Res J 74:146–154

    Article  CAS  Google Scholar 

  • Lee H, Sundaram J, Zhu L, Zhao Y, Mani S (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydr Polym 181:506–513

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Li H, Legere S, He Z, Zhang H, Li J, Yang B, Zhang S, Zhang L, Zheng L, Ni Y (2018) Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose 25:3733–3753

    Article  CAS  Google Scholar 

  • Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9:735–739

    Article  CAS  Google Scholar 

  • Mendonça RT, Jara J, González V, Elissetche J, Freer J (2008) Evaluation of the white-rot fungi Ganoderma austral and Ceriposipsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330

    Article  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J App Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Nagarajan S, Skillen NC, Irvine JTS, Lawton LA, Robertson PKJ (2017) Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renew Sustain Energ Rev 77:182–192

    Article  CAS  Google Scholar 

  • Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–719

    Article  CAS  Google Scholar 

  • Nakano S, Nakano T (2015) Morphological changes induced in wood samples by aqueous NaOH treatment and their effects on the conversion of cellulose I to cellulose II. Holzforschung 69:483–491

    Article  CAS  Google Scholar 

  • Nakano T, Sugiyama J, Norimoto M (2000) Contractive force and transformation of microfibril with aqueous sodium hydroxide solution for wood. Holzforschung 54:315–320

    Article  CAS  Google Scholar 

  • Nakano T, Tanimoto T, Hashimoto T (2013) Morphological change induced with NaOH-water solution for ramie fiber: change mechanism and effects of concentration and temperature. J Mater Sci 48:7510–7517

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ib and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediate and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Poletto M, Ornaghi H, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Wilfor S (2007) Spectral characterization of Eucalyptus wood. Appl Spectrosc 61:1168–1177

    Article  CAS  Google Scholar 

  • Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  • Porro F, Bédué I, Chanzy H, Heux L (2007) Solid-state 13C NMR study of Na-cellulose complexes. Biomacromol 8:2586–2593

    Article  CAS  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB (2015) Comparative evaluation of the action of two different endoglucanases. Part I: on a fully bleached, commercial acid sulfite dissolving pulp. Cellulose 22:2067–2079

    Article  CAS  Google Scholar 

  • Reyes DCA, Gorzsás A, Stridh K, de Wit P, Sundman O (2017) Alkalization of dissolving pulp with highly concentrated caustic at low NaOH stoichiometric excess. Carbohydr Polym 165:213–220

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Göttingen

  • Sears KD, Hinck JF, Sewell CG (1982) Highly reactive wood pulps for cellulose acetate production. J Appl Polym Sci 27:4599–4610

    Article  CAS  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sa VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from Eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548

    Article  CAS  Google Scholar 

  • Xing L, Gu J, Zhang W, Tu D, Hu C (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of tetra pak cellulose I. Carbohydr Polym 192:184–192

    Article  CAS  Google Scholar 

  • Yokoyama T, Kadla KF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044

    Article  CAS  Google Scholar 

  • Yu L, Lin J, Tian F, Li X, Bian F, Wang J (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mater Chem A 2:6402–6411

    Article  CAS  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Yue Y, Han G, Wu Q (2013) Transitional properties of cotton fibers from cellulose I to cellulose structure. BioResources 8:6460–6471

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from FONDECYT (research Grant No. 1160306) and the provision of facilities and technical support by Instituto GEA-UdeC for XRD analysis and CESMI-UdeC for SEM analysis are acknowledged. ICV thanks CONICYT for a Ph.D. Grant (No. 21180299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regis Teixeira Mendonça.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Varela, I., Pereira, M. & Mendonça, R.T. Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose 25, 6831–6845 (2018). https://doi.org/10.1007/s10570-018-2060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2060-4

Keywords

Navigation