Skip to main content
Log in

Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report on an efficient method for extracting cellulose nanofibers with cellulose II crystal structure that presents a relatively high yield (approximately 82%) after mechanical treatment. Delignification technique plays an important role in the conversion of crystals from cellulose I to cellulose II during the mercerization process and in the subsequent fibrillation of cellulose II nanofibers. Delignified wood pulps (with half of the lignin removed) were treated with 17.5 wt% sodium hydroxide solution to mercerize the cellulose, and then the remaining lignin was further removed to purify the pulps. The resulting pulps were fibrillated by using only one pass through a grinder. X-ray diffraction patterns revealed that the above mercerized pulps were successfully converted into the cellulose II crystal structure. Morphological observation showed that cellulose II nanofibers with a width of approximately 15–90 nm were successfully obtained using the above method. This may have occurred because the remaining half of the lignin in wood pulps partly prevented the interdigitation and aggregation of the cellulose microfibrils during the mercerization process, thus facilitating the subsequent nanofibrillation. However, for the delignified wood pulps (with more than two-thirds of the lignin removed), the microfibrils in the cell wall bound more easily to each other by aggregation during the mercerization process, which may have caused difficulties in the subsequent nanofibrillation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Jiang N, Chen P (2010) A method for isolating cellulose nanofibrils from wood and their morphological characteristics. Acta Polym Sin 11:1320–1326

    Article  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Article  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I -> cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Douglass EF, Avci H, Boy R, Rojas OJ, Kotek R (2018) A review of cellulose and cellulose blends for preparation of bio-derived and conventional membranes, nanostructured thin films, and composites. Polym Rev 58:102–163

    Article  CAS  Google Scholar 

  • Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511

    Article  CAS  Google Scholar 

  • Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I to cellulose II transition. J Appl Polym Sci 30:3779–3790

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Horikawa Y, Konakahara N, Imai T, Kentaro A, Kobayashi Y, Sugiyama J (2013) The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polym Degrad Stabil 98:2351–2356

    Article  CAS  Google Scholar 

  • Hubbell CA, Ragauskas AJ (2010) Effect of acid–chlorite delignification on cellulose degree of polymerization. Bioresourc Technol 101:7410–7415

    Article  CAS  Google Scholar 

  • Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  CAS  Google Scholar 

  • Jin E, Guo JQ, Yang F, Zhu YY, Song JL, Jin YC, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  • Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018

    Article  CAS  Google Scholar 

  • Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739

    Article  CAS  Google Scholar 

  • Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Yu H (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10:1692–1700

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Muhd Julkapli N, Bagheri S (2017) Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Adv Technol 28:1583–1594

    Article  CAS  Google Scholar 

  • Nagarajan S, Skillen NC, Irvine JTS, Lawton LA, Robertson PKJ (2017) Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renew Sustain Energy Rev 77:182–192

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose triesters. J Polym Sci Part A Polym Chem 33:1647–1651

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264

    Article  CAS  Google Scholar 

  • Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8

    Article  CAS  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  Google Scholar 

  • Serizawa T, Kato M, Okura H, Sawada T, Wada M (2016) Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 48:539–544

    Article  CAS  Google Scholar 

  • Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng YL (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122

    Article  CAS  Google Scholar 

  • Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4:219–238

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sun R, Tomkinson J, Wang Y, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxideextraction. Polymer 41(7):2647–2656

    Article  CAS  Google Scholar 

  • Suzuki K, Homma Y, Igarashi Y, Okumura H, Semba T, Nakatsubo F, Yano H (2016) Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose 23:623–635

    Article  CAS  Google Scholar 

  • Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515

    Article  CAS  Google Scholar 

  • Xia Q, Liu Y, Meng J, Cheng W, Chen W, Liu S, Liu Y, Li J, Yu H (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721

    Article  CAS  Google Scholar 

  • Xing L, Gu J, Zhang W, Tu D, Hu C (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr Polym 192:184–192

    Article  CAS  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Jiangsu Province (CN) (Grants Nos. BK20150875, BK20170925, BK20150881), Innovation Fund for Young Scholars of Nanjing Forestry University (No. CX2017003), National Natural Science Foundation of China (NSFC 31670555), and the Starting Foundation of Nanjing forestry University (No. GXL001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiying Wang or Dagang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, C., Fang, L. et al. Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood. Cellulose 25, 7003–7015 (2018). https://doi.org/10.1007/s10570-018-2054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2054-2

Keywords

Navigation