Advertisement

Cellulose

, Volume 25, Issue 7, pp 3899–3911 | Cite as

Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers

  • Amira Errokh
  • Albert Magnin
  • Jean-Luc Putaux
  • Sami Boufi
Original Paper

Abstract

Nanocellulose with a morphology ranging from long flexible to rod-like fibrils were produced via periodate oxidation route followed by reductive treatment with NaBH4 of never-dried eucalyptus pulp. The effect of the aldehyde content on the size and morphology of the resulting nanocellulose was studied by preparing three samples with 450, 830 and 1480 µmol g−1 aldehyde content. The change in particle size after the oxidation and reduction was monitored by dynamic light scattering and the morphology of the nanocellulose was characterized by transmission electron microscopy. It was shown that the length of the cellulose fibrils significantly decreased with increasing oxidation. Depending on the aldehyde content, elementary nanofibrils or bundles of nanofibrils with a length from 100 nm up to several µm were obtained after the reduction process. The reinforcing potential of the nanocellulose was also investigated by dynamic thermomechanical analysis of nanocomposite films with different nanocellulose contents.

Graphical Abstract

Keywords

Nanocellulose Periodate Oxidation Aldehyde 

Notes

Acknowledgments

The Laboratoire Rhéologie et Procédés is part of the LabEx Tec 21 (Investissements d’Avenir: Grant Agreement No. ANR-11-LABX-0030) and of Institut Carnot PolyNat (Investissements d’Avenir: Grant Agreement No. ANR-11-CARN-030-01). This work was supported by the LabEx Tec 21 (Investissements d’Avenir: Grant Agreement No. ANR-11-LABX-0030). The authors thank the NanoBio-ICMG Platform (FR 2607, Grenoble) for granting access to the Electron Microscopy facility.

References

  1. Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20:1765–1775CrossRefGoogle Scholar
  2. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  3. Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107CrossRefGoogle Scholar
  4. Chavan VB, Sarwade BD, Varma AJ (2002) Morphology of cellulose and oxidised cellulose in powder form. Carbohydr Polym 50:41–45CrossRefGoogle Scholar
  5. Chen D, van de Ven TGM (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23:1051–1059CrossRefGoogle Scholar
  6. Guigo N, Mazeau K, Putaux J-L, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21:4119–4133CrossRefGoogle Scholar
  7. Hietala M, Ammälä A, Silvennoinen J, Liimatainen H (2016) Fluting medium strengthened by periodate–chlorite oxidized nanofibrillated celluloses. Cellulose 23:427–437CrossRefGoogle Scholar
  8. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  9. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492CrossRefPubMedGoogle Scholar
  10. Larsson PA, Berglund LA, Wågberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core–shell structured cellulose nanofibrils. Biomacromolecules 15:2218–2223CrossRefPubMedGoogle Scholar
  11. Liimatainen H, Visanko M, Sirviö JA, Hormi O, Niinimäki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597CrossRefPubMedGoogle Scholar
  12. Liimatainen H, Visanko M, Sirviö JA, Hormi O, Niinimäki J (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749CrossRefGoogle Scholar
  13. Lin N, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294CrossRefPubMedGoogle Scholar
  14. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J59:302–325CrossRefGoogle Scholar
  15. Lu F-F, Yu H-Y, Zhou Y, Yao J-M (2016) Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: optimization with double response surface model and templates for silver nanoparticles. Express Polym Lett 10:965–976CrossRefGoogle Scholar
  16. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197CrossRefGoogle Scholar
  17. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRefGoogle Scholar
  18. Nieduszynski I, Preston RD (1970) Crystallite size in natural cellulose. Nature 225:273–274CrossRefGoogle Scholar
  19. Princi VE, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Thermochim Acta 418:123–130CrossRefGoogle Scholar
  20. Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRefGoogle Scholar
  21. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  22. Sirviö JA, Visanko M, Laitinen O, Ämmälä A, Liimatainen H (2016) Amino-modified cellulose nanocrystals with adjustablehydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr Polym 136:581–587CrossRefPubMedGoogle Scholar
  23. van de Ven TGM, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114CrossRefPubMedGoogle Scholar
  24. Vikman M, Vartiainen J, Tsitko I, Korhonen P (2015) Biodegradability and compostability of nanofibrillar cellulose-based products. J Polym Environ 23:206–215CrossRefGoogle Scholar
  25. Visanko M, Liimatainen H, Antti Sirvio J, Mikkonen KS, Tenkanen M, Sliz R, Hormie O, Niinimaki J (2015) Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. RSC Adv 5:15140–15146CrossRefGoogle Scholar
  26. Yang H, Tejado A, Alam MN, Antal M, van de Ven TGM (2012) Films prepared fromelectrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Amira Errokh
    • 1
  • Albert Magnin
    • 2
  • Jean-Luc Putaux
    • 3
  • Sami Boufi
    • 1
  1. 1.LMSE, Faculty of ScienceUniversity of SfaxSfaxTunisia
  2. 2.CNRS, LRPUniversité Grenoble AlpesGrenobleFrance
  3. 3.CNRS, CERMAVUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations