, Volume 25, Issue 7, pp 3955–3971 | Cite as

Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments

  • Zeren Ying
  • Defeng Wu
  • Zhifeng Wang
  • Wenyuan Xie
  • Yaxin Qiu
  • Xijun Wei
Original Paper


As green composites, cellulose nanofiber (CNF) reinforced polylactide (PLA) systems have attracted increasing attention recently. In this work, three forms of CNFs, including pristine, coupled and acetylated ones, were incorporated with PLA through solution casting and injection molding to prepare PLA nanocomposites with different polymer-fiber affinities, and with different dispersion states and orientation levels of fibers. Rheological and mechanical properties of those systems were studied then in terms of fiber loadings and phase compatibility. Some interesting results are shown here. Surface acetylation can improve phase affinity of CNFs to PLA more evidently as compared to coupling reaction, but it also has diluent effect on the shear flow of nanocomposites, and therefore acetylated CNFs show better dispersion and higher orientation levels relative to coupled ones. However, the linear dynamical shear flow responses of nanocomposites, especially the percolation behaviors, are not sensitive to improved fiber dispersion, but are highly dependent on fiber loadings. All three forms of CNFs exhibit good reinforcement of PLA, and acetylated CNFs provide the best outcome. The relationships between properties of nanocomposites and hierarchical structures of CNFs are then established through the mechanical model.

Graphical abstract


Cellulose nanofibers Surface treatments Polylactide Biocomposites Rheology Mechanical properties 



The authors gratefully thank the National Natural Science Foundation of China (51573156) and the Research Innovation Program for Graduates of Jiangsu Province (XSJCX17_013) for the financial support.

Supplementary material

10570_2018_1862_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2915 kb)


  1. Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959CrossRefGoogle Scholar
  2. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  3. Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897CrossRefGoogle Scholar
  4. Chatterjee T, Krishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75:050403CrossRefGoogle Scholar
  5. Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41:5333–5338CrossRefGoogle Scholar
  6. Chen GX, Kim HS, Kim ES, Yoon JS (2005) Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 46:11829–11836CrossRefGoogle Scholar
  7. Chen JX, Wu DF, Tam KC, Pan KR, Zheng ZG (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829CrossRefPubMedGoogle Scholar
  8. Ding WD, Chu RKM, Mark LH, Park CB, Sain M (2015a) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231–247CrossRefGoogle Scholar
  9. Ding WD, Kuboki T, Wong A, Park CB, Sain M (2015b) Rheology, thermal properties, and foaming behavior of high D-content polylactic acid/cellulose nanofiber composites. RSC Adv 5:91544–91557CrossRefGoogle Scholar
  10. Dinh SM, Armstrong RC (1984) Rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28:207–227CrossRefGoogle Scholar
  11. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26CrossRefGoogle Scholar
  12. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRefPubMedGoogle Scholar
  13. Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A Appl S 40:810–821CrossRefGoogle Scholar
  14. Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352CrossRefGoogle Scholar
  15. Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A 66:13–28CrossRefGoogle Scholar
  16. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  17. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18CrossRefGoogle Scholar
  18. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRefGoogle Scholar
  19. Jonoobi M, Mathew AP, Abdi Majid MM, Makinejad D, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRefGoogle Scholar
  20. Kalb B, Pennings AJ (1980) General crystallization behaviour of poly(L-lactic acid). Polymer 21:607–612CrossRefGoogle Scholar
  21. Kono H (2013) Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy. Carbohydr Res 375:136–144CrossRefPubMedGoogle Scholar
  22. Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205CrossRefGoogle Scholar
  23. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A Appl S 42:1509–1514CrossRefGoogle Scholar
  24. Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behavior. Cellulose 15:1–16CrossRefGoogle Scholar
  25. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  26. Lim SK, Kim JW, Chin I, Kwon YK, Choi HJ (2002) Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate). Chem Mater 14:1989–1994CrossRefGoogle Scholar
  27. Lv QL, Xu CJ, Wu DF, Wang ZF, Lan RY, Wu LS (2017a) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl S 92:17–26CrossRefGoogle Scholar
  28. Lv QL, Ying ZR, Wu DF, Wang ZF, Zhang M (2017b) Nucleation role of basalt fibers during crystallization of poly(ε-caprolactone) composites. Ind Eng Chem Res 56:2746–2753CrossRefGoogle Scholar
  29. Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRefGoogle Scholar
  30. Milczewska K, Voelkel A (2006) The use of Flory–Huggins parameters as a measure of interactions in polymer-filler systems. J Polym Sci Part B Polym Phys 44:1853–1862CrossRefGoogle Scholar
  31. Moraczewski K, Rytlewski P, Malinowski R, Tracz A, Zenkiewicz M (2015) Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization. Mater Chem Phys 153:135–144CrossRefGoogle Scholar
  32. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725CrossRefGoogle Scholar
  33. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou XJ, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl S 83:2–18CrossRefGoogle Scholar
  34. Qiu YX, Wu DF, Yan LL, Zhou Y (2016) Recycling of spodumene slag: preparation of green polymer composite. RSC Adv 6:36942–36953CrossRefGoogle Scholar
  35. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRefGoogle Scholar
  36. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRefGoogle Scholar
  37. Safdari F, Carreau PJ, Heuzey MC, Kamal MR (2017a) Effects of poly(ethylene glycol) on the morphology and properties of biocomposites based on polylactide and cellulose nanofibers. Cellulose 24:2877–2893CrossRefGoogle Scholar
  38. Safdari F, Carreau PJ, Heuzey MC, Kamal MR, Sain MM (2017b) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24:755–767CrossRefGoogle Scholar
  39. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  40. Suttiwijitpukdee N, Sato H, Zhang JM, Hashimoto T (2011) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477CrossRefGoogle Scholar
  41. Switzer LH III, Klingenberg DJ (2003) Rheology of sheared flexible fiber suspensions via fiber-level simulations. J Rheol 47:759–778CrossRefGoogle Scholar
  42. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A Study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl S 36:1110–1118CrossRefGoogle Scholar
  43. Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085CrossRefPubMedGoogle Scholar
  44. Wang Y, Cheng YX, Chen JX, Wu DF, Qiu YX, Yao X, Zhou YN, Chen C (2015a) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226CrossRefGoogle Scholar
  45. Wang ZK, Jiang F, Zhang YQ, You YZ, Wang ZG, Guan ZB (2015b) Bioinspired design of nanostructured elastomers with cross-linked soft matrix grafting on the oriented rigid nanofibers to mimic mechanical properties of human skin. ACS Nano 9:271–278CrossRefPubMedGoogle Scholar
  46. Wang ZK, Yuan L, Jiang F, Zhang YQ, Wang ZG, Tang CB (2016a) Bioinspired high resilient elastomers to mimic resilin. ACS Macro Lett 5:220–223CrossRefGoogle Scholar
  47. Wang ZK, Zhang YQ, Yuan L, Hayat J, Trenor NM, Lamm ME, Vlaminck L, Billiet S, Du Prez FE, Wang ZG, Tang CB (2016b) Biomass approach toward robust, sustainable, multiple-shape-memory materials. ACS Macro Lett 5:602–606CrossRefGoogle Scholar
  48. Wang YK, Xu CJ, Wu DF, Xie WY, Wang K, Xia QR, Yang H (2018) Rheology of the cellulose nanocrystal filled poly(ε-caprolactone) biocomposites. Polymer 140:167–178CrossRefGoogle Scholar
  49. Wu DF, Wu L, Wu LF, Zhang M (2006) Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stab 91:3149–3155CrossRefGoogle Scholar
  50. Wu DF, Wu L, Wu LF, Xu B, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys 45:1100–1113CrossRefGoogle Scholar
  51. Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584CrossRefGoogle Scholar
  52. Wu DF, Wu L, Xu B, Zhang M (2009) Degradation induced by nano-structural evolution of polylactide/clay nanocomposites in the isothermal cold crystallization. Polym Int 58:430–436CrossRefGoogle Scholar
  53. Wu DF, Wu L, Zhou WD, Sun YR, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks of biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48:479–489CrossRefGoogle Scholar
  54. Xie YJ, Hill CAS, Xiao ZF, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl S 41:806–819CrossRefGoogle Scholar
  55. Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property study. Carbohydr Polym 146:58–66CrossRefPubMedGoogle Scholar
  56. Xu CJ, Lv QL, Wu DF, Wang ZF (2017a) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24:2163–2175CrossRefGoogle Scholar
  57. Xu CJ, Wu DF, Lv QL, Yan LL (2017b) Crystallization temperature as the probe to detect polymer-filler compatibility in the poly(ε-caprolactone) composites with acetylated cellulose nanocrystals. J Phys Chem C 121:18615–18624CrossRefGoogle Scholar
  58. Xu CJ, Chen C, Wu DF (2018) High-performance poly(ε-caprolactone) composite membrane containing starch nanocrystal. Carbohydr Polym 182:115–122CrossRefPubMedGoogle Scholar
  59. Yeh MK, Ta NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9CrossRefGoogle Scholar
  60. Ying ZR, Wu DF, Zhang M, Qiu YX (2017) Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing. Compos Struct 176:1020–1027CrossRefGoogle Scholar
  61. Yu ZY, Yin JB, Yan SF, Xie YT, Ma J, Chen XS (2007) Biodegradable poly(L-lactide)/poly(ε-caprolactone)-modified montmorillonite nanocomposites: preparation and characterization. Polymer 48:6439–6447CrossRefGoogle Scholar
  62. Zhou SB, Zheng XT, Yu XJ, Wang JX, Weng J, Li XH, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zeren Ying
    • 1
  • Defeng Wu
    • 1
    • 2
  • Zhifeng Wang
    • 3
  • Wenyuan Xie
    • 1
    • 2
  • Yaxin Qiu
    • 1
  • Xijun Wei
    • 1
  1. 1.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Provincial Key Laboratories of Environmental Engineering and MaterialsYangzhouPeople’s Republic of China
  3. 3.Testing CenterYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations