Skip to main content
Log in

Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

As green composites, cellulose nanofiber (CNF) reinforced polylactide (PLA) systems have attracted increasing attention recently. In this work, three forms of CNFs, including pristine, coupled and acetylated ones, were incorporated with PLA through solution casting and injection molding to prepare PLA nanocomposites with different polymer-fiber affinities, and with different dispersion states and orientation levels of fibers. Rheological and mechanical properties of those systems were studied then in terms of fiber loadings and phase compatibility. Some interesting results are shown here. Surface acetylation can improve phase affinity of CNFs to PLA more evidently as compared to coupling reaction, but it also has diluent effect on the shear flow of nanocomposites, and therefore acetylated CNFs show better dispersion and higher orientation levels relative to coupled ones. However, the linear dynamical shear flow responses of nanocomposites, especially the percolation behaviors, are not sensitive to improved fiber dispersion, but are highly dependent on fiber loadings. All three forms of CNFs exhibit good reinforcement of PLA, and acetylated CNFs provide the best outcome. The relationships between properties of nanocomposites and hierarchical structures of CNFs are then established through the mechanical model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48:943–959

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897

    Article  CAS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75:050403

    Article  CAS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41:5333–5338

    Article  CAS  Google Scholar 

  • Chen GX, Kim HS, Kim ES, Yoon JS (2005) Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 46:11829–11836

    Article  CAS  Google Scholar 

  • Chen JX, Wu DF, Tam KC, Pan KR, Zheng ZG (2017) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 157:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Ding WD, Chu RKM, Mark LH, Park CB, Sain M (2015a) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231–247

    Article  CAS  Google Scholar 

  • Ding WD, Kuboki T, Wong A, Park CB, Sain M (2015b) Rheology, thermal properties, and foaming behavior of high D-content polylactic acid/cellulose nanofiber composites. RSC Adv 5:91544–91557

    Article  CAS  Google Scholar 

  • Dinh SM, Armstrong RC (1984) Rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28:207–227

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384

    Article  CAS  PubMed  Google Scholar 

  • Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A Appl S 40:810–821

    Article  CAS  Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  CAS  Google Scholar 

  • Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A 66:13–28

    Article  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi Majid MM, Makinejad D, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997

    Article  CAS  Google Scholar 

  • Kalb B, Pennings AJ (1980) General crystallization behaviour of poly(L-lactic acid). Polymer 21:607–612

    Article  CAS  Google Scholar 

  • Kono H (2013) Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy. Carbohydr Res 375:136–144

    Article  CAS  PubMed  Google Scholar 

  • Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200–1205

    Article  CAS  Google Scholar 

  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A Appl S 42:1509–1514

    Article  CAS  Google Scholar 

  • Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behavior. Cellulose 15:1–16

    Article  CAS  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  • Lim SK, Kim JW, Chin I, Kwon YK, Choi HJ (2002) Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate). Chem Mater 14:1989–1994

    Article  CAS  Google Scholar 

  • Lv QL, Xu CJ, Wu DF, Wang ZF, Lan RY, Wu LS (2017a) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl S 92:17–26

    Article  CAS  Google Scholar 

  • Lv QL, Ying ZR, Wu DF, Wang ZF, Zhang M (2017b) Nucleation role of basalt fibers during crystallization of poly(ε-caprolactone) composites. Ind Eng Chem Res 56:2746–2753

    Article  CAS  Google Scholar 

  • Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Milczewska K, Voelkel A (2006) The use of Flory–Huggins parameters as a measure of interactions in polymer-filler systems. J Polym Sci Part B Polym Phys 44:1853–1862

    Article  CAS  Google Scholar 

  • Moraczewski K, Rytlewski P, Malinowski R, Tracz A, Zenkiewicz M (2015) Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization. Mater Chem Phys 153:135–144

    Article  CAS  Google Scholar 

  • Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou XJ, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl S 83:2–18

    Article  CAS  Google Scholar 

  • Qiu YX, Wu DF, Yan LL, Zhou Y (2016) Recycling of spodumene slag: preparation of green polymer composite. RSC Adv 6:36942–36953

    Article  CAS  Google Scholar 

  • Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Article  CAS  Google Scholar 

  • Safdari F, Carreau PJ, Heuzey MC, Kamal MR (2017a) Effects of poly(ethylene glycol) on the morphology and properties of biocomposites based on polylactide and cellulose nanofibers. Cellulose 24:2877–2893

    Article  CAS  Google Scholar 

  • Safdari F, Carreau PJ, Heuzey MC, Kamal MR, Sain MM (2017b) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24:755–767

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Suttiwijitpukdee N, Sato H, Zhang JM, Hashimoto T (2011) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477

    Article  CAS  Google Scholar 

  • Switzer LH III, Klingenberg DJ (2003) Rheology of sheared flexible fiber suspensions via fiber-level simulations. J Rheol 47:759–778

    Article  CAS  Google Scholar 

  • Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A Study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl S 36:1110–1118

    Article  CAS  Google Scholar 

  • Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng YX, Chen JX, Wu DF, Qiu YX, Yao X, Zhou YN, Chen C (2015a) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226

    Article  CAS  Google Scholar 

  • Wang ZK, Jiang F, Zhang YQ, You YZ, Wang ZG, Guan ZB (2015b) Bioinspired design of nanostructured elastomers with cross-linked soft matrix grafting on the oriented rigid nanofibers to mimic mechanical properties of human skin. ACS Nano 9:271–278

    Article  CAS  PubMed  Google Scholar 

  • Wang ZK, Yuan L, Jiang F, Zhang YQ, Wang ZG, Tang CB (2016a) Bioinspired high resilient elastomers to mimic resilin. ACS Macro Lett 5:220–223

    Article  CAS  Google Scholar 

  • Wang ZK, Zhang YQ, Yuan L, Hayat J, Trenor NM, Lamm ME, Vlaminck L, Billiet S, Du Prez FE, Wang ZG, Tang CB (2016b) Biomass approach toward robust, sustainable, multiple-shape-memory materials. ACS Macro Lett 5:602–606

    Article  CAS  Google Scholar 

  • Wang YK, Xu CJ, Wu DF, Xie WY, Wang K, Xia QR, Yang H (2018) Rheology of the cellulose nanocrystal filled poly(ε-caprolactone) biocomposites. Polymer 140:167–178

    Article  CAS  Google Scholar 

  • Wu DF, Wu L, Wu LF, Zhang M (2006) Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stab 91:3149–3155

    Article  CAS  Google Scholar 

  • Wu DF, Wu L, Wu LF, Xu B, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys 45:1100–1113

    Article  CAS  Google Scholar 

  • Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584

    Article  CAS  Google Scholar 

  • Wu DF, Wu L, Xu B, Zhang M (2009) Degradation induced by nano-structural evolution of polylactide/clay nanocomposites in the isothermal cold crystallization. Polym Int 58:430–436

    Article  CAS  Google Scholar 

  • Wu DF, Wu L, Zhou WD, Sun YR, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks of biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48:479–489

    Article  CAS  Google Scholar 

  • Xie YJ, Hill CAS, Xiao ZF, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl S 41:806–819

    Article  CAS  Google Scholar 

  • Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property study. Carbohydr Polym 146:58–66

    Article  CAS  PubMed  Google Scholar 

  • Xu CJ, Lv QL, Wu DF, Wang ZF (2017a) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24:2163–2175

    Article  CAS  Google Scholar 

  • Xu CJ, Wu DF, Lv QL, Yan LL (2017b) Crystallization temperature as the probe to detect polymer-filler compatibility in the poly(ε-caprolactone) composites with acetylated cellulose nanocrystals. J Phys Chem C 121:18615–18624

    Article  CAS  Google Scholar 

  • Xu CJ, Chen C, Wu DF (2018) High-performance poly(ε-caprolactone) composite membrane containing starch nanocrystal. Carbohydr Polym 182:115–122

    Article  CAS  PubMed  Google Scholar 

  • Yeh MK, Ta NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9

    Article  CAS  Google Scholar 

  • Ying ZR, Wu DF, Zhang M, Qiu YX (2017) Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing. Compos Struct 176:1020–1027

    Article  Google Scholar 

  • Yu ZY, Yin JB, Yan SF, Xie YT, Ma J, Chen XS (2007) Biodegradable poly(L-lactide)/poly(ε-caprolactone)-modified montmorillonite nanocomposites: preparation and characterization. Polymer 48:6439–6447

    Article  CAS  Google Scholar 

  • Zhou SB, Zheng XT, Yu XJ, Wang JX, Weng J, Li XH, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully thank the National Natural Science Foundation of China (51573156) and the Research Innovation Program for Graduates of Jiangsu Province (XSJCX17_013) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Z., Wu, D., Wang, Z. et al. Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25, 3955–3971 (2018). https://doi.org/10.1007/s10570-018-1862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1862-8

Keywords

Navigation