Advertisement

Cellulose

, Volume 25, Issue 7, pp 4121–4131 | Cite as

Bio-template synthesis of three-dimensional microtubular nickel-cobalt layered double hydroxide composites for energy storage

Original Paper
  • 34 Downloads

Abstract

Three-dimensional hollow microtubular nickel-cobalt layered double hydroxide composites were facilely fabricated by controlling the growth on the external and internal surface of natural kapok fibers. The incorporation of kapok fibers induced the confined growth of nickel-cobalt layered double hydroxide on the kapok fiber templates, and the tubular structure of the composite did not collapse with the extension of the hydrothermal time. The obtained unique structure was in favor of enhancing the electrochemical properties of nickel-cobalt hydroxide. The composites prepared after reaction for 8 h exhibited the maximum specific capacity of 1112.25 C g−1 at current density of 0.5 A g−1. Coupled with the active carbon negative electrode, the assembled hybrid supercapacitor device delivered a maximum energy density of 38.0 W h kg−1 with an operational voltage of 1.6 V.

Graphical Abstract

Keywords

Layered double hydroxide Kapok fiber Hollow Three dimension Supercapacitor 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51303190).

Supplementary material

10570_2018_1849_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4934 kb)
10570_2018_1849_MOESM2_ESM.mp4 (2.6 mb)
Supplementary material 2 (MP4 2669 kb)

References

  1. Chen MD, Kang XY, Wumaier T, Dou JQ, Gao B, Han Y, Xu GQ, Liu ZQ, Zhang L (2013) Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Chem 17:1005–1012Google Scholar
  2. Chen H, Hu L, Chen M, Yan Y, Wu L (2014a) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942CrossRefGoogle Scholar
  3. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014b) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111CrossRefGoogle Scholar
  4. Chen W, Rakhi RB, Wang Q, Hedhili MN, Alshareef HN (2014c) Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv Funct Mater 24:3130–3143CrossRefGoogle Scholar
  5. Chung JT, Hwang KJ, Shim WG, Kim C, Park JY, Choi DY, Lee JW (2013) Synthesis and characterization of activated hollow carbon fibers from Ceiba pentandra (L.) Gaertn. (kapok). Mater Lett 93:401–403CrossRefGoogle Scholar
  6. Djebbi MA, Braiek M, Namour P, Amara ABH, Jaffrezic-Renault N (2016) Layered double hydroxide materials coated carbon electrode: new challenge to future electrochemical power devices. Appl Surf Sci 386:352–363CrossRefGoogle Scholar
  7. Duan C, Zhao N, Yu X, Zhang X, Xu J (2013) Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 20:849–860CrossRefGoogle Scholar
  8. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 7:1777–1790CrossRefGoogle Scholar
  9. Hwang KJ, Hwang CH, Lee IH, Kim T, Jin S, Park JY (2014) Synthesis and characterization of hollow metal oxide micro-tubes using a biomaterial template. Biomass Bioenerg 68:62–66CrossRefGoogle Scholar
  10. Jiang Z, Li ZP, Qin ZH, Sun HY, Jiao XL, Chen DR (2013) LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5:11770–11775CrossRefGoogle Scholar
  11. Kim J, Ju H, Inamdar AI, Jo Y, Han J, Kim H, Im H (2014) Synthesis and enhanced electrochemical supercapacitor properties of Ag-MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477CrossRefGoogle Scholar
  12. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Int 6:1773–1780CrossRefGoogle Scholar
  13. Liang K, Gu TL, Cao ZY, Tang XZ, Hu WC, Wei BQ (2014) In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 9:245–251CrossRefGoogle Scholar
  14. Liu N, Li J, Ma W, Liu W, Shi Y, Tao J, Gao Y (2014) Ultrathin and lightweight 3D free-standing Ni@NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. ACS Appl Mater Int 6:13627–13634CrossRefGoogle Scholar
  15. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9:862–866CrossRefGoogle Scholar
  16. Mu B, Zheng Y, Wang A (2015a) Facile fabrication of polyaniline/kapok fiber composites via a semidry method and application in adsorption and catalyst support. Cellulose 22:615–624CrossRefGoogle Scholar
  17. Mu B, Zhang WB, Xu WB, Wang AQ (2015b) Hollowed-out tubular carbon@MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochim Acta 178:709–720CrossRefGoogle Scholar
  18. Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2017) NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy 126:208–216CrossRefGoogle Scholar
  19. Olivia P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievret F, de Guibert A (1982) Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J Power Sources 8:229–255CrossRefGoogle Scholar
  20. Park HW, Na BK, Cho BW, Parka SM, Roh KC (2013) Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors. Phys Chem Chem Phys 15:17626–17635CrossRefGoogle Scholar
  21. Patel R, Inamdar AI, Hou B, Cha S, Ansari AT, Gunjakar JL, Kim H (2017) Solvothermal synthesis of high-performance Ni-Co layered double hydroxide nanofoam electrode for electrochemical energy storage. Curr Appl Phys 17:501–506CrossRefGoogle Scholar
  22. Shen LF, Yu L, Yu XY, Zhao XG, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 5:1868–1872CrossRefGoogle Scholar
  23. Su YZ, Xiao K, Li N, Liu ZQ, Qiao SZ (2014) Amorphous Ni(OH)2@three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A 2:13845–13853CrossRefGoogle Scholar
  24. Tao Y, Li ZJ, Li RY, Ning Q, Kong H, Niu YL, Liu JK (2012) Nickel-cobalt double hydroxides microspheres with hollow interior and hedgehog-like exterior structures for supercapacitors. J Mater Chem 22:23587–23592CrossRefGoogle Scholar
  25. Tao X, Zhang J, Xia Y, Huang H, Du J, Xiao H, Gan Y (2014) Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J Mater Chem A 2:2290–2296CrossRefGoogle Scholar
  26. Tao Y, Li RY, Yang TT, Li ZJ (2015) Nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors. Electrochim Acta 152:530–537CrossRefGoogle Scholar
  27. Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952CrossRefGoogle Scholar
  28. Virtanen J, Pammo A, Keskinen J, Sarlin E, Tuukkanen S (2017) Pyrolysed cellulose nanofibrils and dandelion pappus in supercapacitor application. Cellulose 24:3387–3397CrossRefGoogle Scholar
  29. Xu J, Dong YZ, Cao JY, Guo B, Wang WC, Chen ZD (2013) Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2-Co(OH)2 hollow microspheres and their supercapacitor applications. Electrochim Acta 114:76–82CrossRefGoogle Scholar
  30. Xu WB, Mu B, Wang AQ (2016a) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94CrossRefGoogle Scholar
  31. Xu WB, Mu B, Zhang WB, Wang AQ (2016b) Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Adv 6:68302–68311CrossRefGoogle Scholar
  32. Xu J, Ma C, Cao J, Chen Z (2017a) Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors. Dalton Trans 46:3276–3283CrossRefGoogle Scholar
  33. Xu WB, Mu B, Wang AQ (2017b) Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochim Acta 224:113–124CrossRefGoogle Scholar
  34. Yang J, Yu C, Fan X, Qiu J (2014) 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv Energy Mater 4:1400761CrossRefGoogle Scholar
  35. Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952CrossRefGoogle Scholar
  36. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRefGoogle Scholar
  37. Yu C, Liu Z, Han X, Huang H, Zhao C, Yang J, Qiu J (2016) NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 110:1–7CrossRefGoogle Scholar
  38. Zhu JW, Chen S, Zhou H, Wang X (2012) Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res 5:11–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of ScienceGansu Agricultural UniversityLanzhouChina
  4. 4.Natural Energy InstituteGansu Academy of SciencesLanzhouChina

Personalised recommendations