Skip to main content
Log in

Hydrophobic modification of hemp powders for their application in the stabilization of Pickering emulsions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The high hydrophilicity of hemp powder (HP) due to the phenolic hydroxyls limits their application in the preparation of Pickering emulsions (PEs). For this purpose, this study modified the surface of HP with sodium hydroxide (NaOH) and n-butyl bromide (n-BB) to tune its wettability so that it can be used as an effective emulsifier in PEs formulations. The structure and composition of modified HP were characterized by SEM, EDX, TG, DSC,FTIR and TCA. The results indicated that the phenolic hydroxyls had been partially converted to the phenolic ethers. By systemically optimized the modifiers contents and reaction time, the HP with balanced surface amphiphilicity was obtained. Long-term stable PEs with homogeneous droplets could be successfully fabricated using modified HP. Moreover, the PEs also displayed better sun-screening performance compared with the unmodified HP aqueous solutions. This finding broadened the potential applications of HP in the coatings, cosmetic and other fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by colloidal particles. Adv Colloid Interface Sci 100(02):503–546

    Article  CAS  Google Scholar 

  • Bai RX, Xue LH, Dou RK, Meng SX, Xie CY, Zhang Q, Guo T, Meng T (2016) Light-triggered release from Pickering emulsions stabilized by TiO2 nanoparticles with tailored wettability. Langmuir 32(36):9254–9264

    Article  CAS  PubMed  Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Licciardello A (2010) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83(1):38–45

    Article  Google Scholar 

  • Binks BP (2007) Colloidal particles at liquid interfaces. Phys Chem Chem Phys 9(48):6298–6299

    Article  CAS  PubMed  Google Scholar 

  • Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16(23):8622–8631

    Article  CAS  Google Scholar 

  • Chen HS, Cong TN, Yang W, Tan CQ, Li YL, Ding YL (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312

    Article  CAS  Google Scholar 

  • Chen QH, Zheng J, Xu YT, Yin SW, Liu F, Tang CH (2017) Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloid 75:125–130

    Article  CAS  Google Scholar 

  • Ferrero B, Fombuena V, Fenollar O, Boronat T, Balart R (2015) Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos 36(8):1378–1385

    Article  CAS  Google Scholar 

  • Gao ZM, Zhao JJ, Huang Y, Yao XL, Zhang K, Fang YP, Nishinari K, Phillips GO, Jiang FT, Yang H (2017) Edible Pickering emulsion stabilized by protein fibrils. Part 1: effects of pH and fibrils concentration. LWT-Food Sci Technol 76:1–8

    Article  CAS  Google Scholar 

  • Garcia C, Jaldon Dupeyre D, Vignon MR (1998) Fibers from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14(3):251–260

    Article  Google Scholar 

  • George M, Mussone PG, Bressler DC (2015) Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: surface and thermal characterization. Carbohydr Polym 134:230–239

    Article  CAS  PubMed  Google Scholar 

  • Hu CC, Chen L, Gu RX, Yu JR, Zhu J, Hu ZM (2013) Thermal decomposition behavior of a heterocyclic aramid fiber. J Macromol Sci B 52(5):726–737

    Article  CAS  Google Scholar 

  • Jacquet N, Quievy N, Vanderghem C, Janas S, Blecker C, Wathelet B, Devaux J, Paquot M (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stabil 96(9):1582–1588

    Article  CAS  Google Scholar 

  • Lehtinen KEJ, Zachariah MR (2002) Energy accumulation in nanoparticle collision and coalescence processes. J Aerosol Sci 33(2):357–368

    Article  CAS  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  CAS  Google Scholar 

  • Li Z, Wu HR, Yang M, Xu DR, Chen J, Feng HS, Lu Y, Zhang LM, Yu Y, Kang WL (2018) Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohydr Polym 181:224–233

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Boker A, Skaff H, Cookson D, Dinsmore AD, Emrick T, Russell TP (2005) Nanoparticle assembly at fluid interfaces: structure and dynamics. Langmuir 21(1):191–194

    Article  CAS  PubMed  Google Scholar 

  • Marefati A, Wiege B, Haase NU, Matos M, Rayner M (2017) Pickering emulsifiers based on hydrophobically modified small granular starches—Part I: manufacturing and physic-chemical characterization. Carbohydr Polym 175:473–483

    Article  CAS  PubMed  Google Scholar 

  • Marku D, Wahigren M, Rayner M, Sjoo M, Timgren A (2012) Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharmaceut 428(1–2):1–7

    Article  CAS  Google Scholar 

  • Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286(2):107–113

    Article  CAS  Google Scholar 

  • Morrison WH III, Archibald DD, Sharma HSS, Akin DE (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crop Prod 12(1):39–46

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites-a review. J Thermoplast Compos 22(2):135–162

    Article  CAS  Google Scholar 

  • Nan FF, Wu J, Feng Q, Liu Y, Ngai T, Ma GH (2014) Uniform chitosan-coated alginate particles as emulsifiers for preparation of Pickering emulsions with stimulus dependence. Colloid Surf A 456:246–252

    Article  CAS  Google Scholar 

  • Prestidge CA, Simovic S (2006) Nanoparticle encapsulation of emulsion droplets. Int J Pharmaceut 324(1):92–100

    Article  CAS  Google Scholar 

  • Privas E, Navard P (2013) Preparation, processing and properties of lignosulfonate-flax composite board. Carbohydr Polym 93(1):300–306

    Article  CAS  PubMed  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibers on composite properties. B Mater Sci 24(2):129–135

    Article  CAS  Google Scholar 

  • Rio JCD, Gutierrez A, Rodriguez IM, Ibarra D, Martinez AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrol 79(1–2):39–46

    Google Scholar 

  • Saini S, Belgacem MN, Bras J (2017) Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater Sci Eng, C 75:760–768

    Article  CAS  Google Scholar 

  • Tang CH (2017) Emulsifying properties of soy proteins: a critical review with emphasis on the role of conformational flexibility. Crit Rev Food Sci 57:2636–2679

    Article  CAS  Google Scholar 

  • Torino E, Reverchon E, Johnston KP (2010) Carbon dioxide/water, water/carbon dioxide emulsions and double emulsions stabilized with a nonionic biocompatible surfactant. J Colloid Interf Sci 348(2):469–478

    Article  CAS  Google Scholar 

  • Yang X, Jia E, Ye G, Xu J (2015) Thermal degradation behavior and probable mechanism of aromatic poly(1,3,4-oxadiazole)s fibers. Polym Bull 72(5):1067–1080

    Article  CAS  Google Scholar 

  • Yang YQ, Fang ZW, Chen X, Zhang WW, Xie YM, Chen YH, Liu ZG, Yuan WE (2017) An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol 8:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JC, Zhang H (2008) Structure and performance of China-hemp fiber and process technology. Chin Polym Bull 12:44–51

    Google Scholar 

  • Zhang H, Zhang JC, Zhang J (2011) Hemp-a high value biological resource and its application. Chin Polym Bull 8:1–7

    Google Scholar 

  • Zhang X, Yang W, Blasiak W (2012) Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrol 96(96):110–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Youth Teacher Training Program (ZZZyyx16013), Collaborative Innovation Platform of Fragrant Plants Resource Development (10210Q172020), Study on Rapid Propagation and Application Technology of Endangered Rare Endangered Plant (26220I170127 - 17090503700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, L., Ou, W. et al. Hydrophobic modification of hemp powders for their application in the stabilization of Pickering emulsions. Cellulose 25, 4107–4120 (2018). https://doi.org/10.1007/s10570-018-1848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1848-6

Keywords

Navigation