, Volume 25, Issue 7, pp 4079–4091 | Cite as

Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors

  • Yang Bo
  • Yaping Zhao
  • Zaisheng Cai
  • Addie Bahi
  • Caihong Liu
  • Frank Ko
Original Paper


Flexible electrodes made of cotton textile, polypyrrole (PPy) and multi-walled carbon nanotubes (MWCNT) composites were synthesized via a facile in situ chemical deposition method. This method involves a series of successive steps by immersing the cotton fabric in various MWCNT suspensions; adding monomers and p-toluene sulfonic acid (TsOH) as dopant under ultrasonic condition; and then initiating the polymerization by drop-in the oxidant. The fabricated electrodes exhibited a specific capacitance of 597 F g−1 with good cycle stability (maintaining 96.8% after 1000 cycles). Symmetric all-solid-state supercapacitors based on cotton/PPy/MWCNT electrodes and poly(vinyl alcohol) (PVA)/H3PO4 gel electrolytes were fabricated and tested. The electrochemical measurements showed that assembled supercapacitors had a specific capacitance of 206.8 F g−1 at a current density of 1 mA cm−2. The supercapacitors were flexible enough to bend and twist with constant capacitance performance and exhibit 72% capacitance retention after 400 charge–discharge cycles.

Graphical Abstract


Flexible electrodes Polypyrrole Cotton/PPy/MWCNT Chemical polymerazation Flexible supercapacitors 



This work was financially supported by the National Natural Science Foundation of China (51303022) and the Fundamental Research Funds for the Central Universities (2232015D3-17).


  1. Adu K, Ma D, Wang Y, Spencer M, Rajagopalan R, Wang CY, Randall C (2017) Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application. Nanotechnology 29:035606–035607Google Scholar
  2. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252CrossRefPubMedGoogle Scholar
  3. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884CrossRefGoogle Scholar
  4. Biniak S, Dzieleńdziak B, Siedlewski J (1995) The electrochemical behaviour of carbon fibre electrodes in various electrolytes. Double-layer capacitance. Carbon 33:1255–1263CrossRefGoogle Scholar
  5. Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672CrossRefGoogle Scholar
  6. Cai J et al (2015) High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl Mater Interfaces 7:14946–14953CrossRefPubMedGoogle Scholar
  7. Firoz BK, Siva Subramanian SP, Anbu KM (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94:487–495CrossRefGoogle Scholar
  8. Ford ENJ, Mendon SK, Thames SF, Ph D, Rawlins JW, Ph D (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fibers Fabr 5:10–20Google Scholar
  9. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387–404CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578CrossRefGoogle Scholar
  11. Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435CrossRefGoogle Scholar
  12. Hu L, Pasta M, Mantia FL, Cui LF, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRefPubMedGoogle Scholar
  13. Huang S, Chen P, Lin W, Lv S, Chen G, Yin X, Chen W (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. Rsc Adv 6:13359–13364CrossRefGoogle Scholar
  14. Jagadale AD, Guan G, Du X, Hao X, Li X, Abudula A (2015) Cobalt hydroxide [Co(OH)2] loaded carbon fiber flexible electrode for high performance supercapacitor. Rsc Adv 5:56942–56948CrossRefGoogle Scholar
  15. Kang ET, Neoh KG, Ong YK, Tan KL, Tan BTG (1991) X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative Fe(III) salts. Macromolecules 24:2822–2828CrossRefGoogle Scholar
  16. Karim MR, Lee CJ, Chowdhury AMS, Nahar N, Mu SL (2007) Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett 61:1688–1692CrossRefGoogle Scholar
  17. Kim JY, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402CrossRefGoogle Scholar
  18. Lee SY, Kim JI, Park SJ (2014) Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78:298–303CrossRefGoogle Scholar
  19. Li L, Seng KH, Liu H, Nevirkovets IP, Guo Z (2013a) Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim Acta 87:801–808CrossRefGoogle Scholar
  20. Li S, Guo Z, Wang C, Wallace G, Liu H (2013b) Flexible cellulose based polypyrrole-multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1:14300–14305CrossRefGoogle Scholar
  21. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175CrossRefGoogle Scholar
  22. Li X, Zhou M, Wang J, Ge F, Zhao Y, Komarneni S, Cai Z (2017) Flexible and internal series-connected supercapacitors with high working voltage using ultralight porous carbon nanofilms. J Power Sources 342:762–771CrossRefGoogle Scholar
  23. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRefPubMedGoogle Scholar
  24. Liu WW, Yan XB, Lang JW, Peng C, Xue QJ (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRefGoogle Scholar
  25. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26:4855–4862CrossRefPubMedGoogle Scholar
  26. Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2015) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRefGoogle Scholar
  27. Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRefGoogle Scholar
  28. Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra-high-power performance. Electrochim Acta 56:10443–10449CrossRefGoogle Scholar
  29. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639CrossRefPubMedPubMedCentralGoogle Scholar
  30. Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Xu J (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 157:344–352CrossRefPubMedGoogle Scholar
  31. Qian T, Yu C, Wu S, Shen J (2013) A facilely prepared polypyrrole–reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. J Mater Chem A 1:6539–6542CrossRefGoogle Scholar
  32. Saravanakumar B, Jayaseelan SS, Seo MK, Kim HY, Kim BS (2017) NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications. Nanoscale 9:18819–18834CrossRefPubMedGoogle Scholar
  33. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116CrossRefGoogle Scholar
  34. Shi K, Zhitomirsky I (2013) Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl Mater Interfaces 5:13161–13170CrossRefPubMedGoogle Scholar
  35. Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 8:15671–15680CrossRefPubMedGoogle Scholar
  36. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefPubMedGoogle Scholar
  37. Tamm J, Raudsepp T, Marandi M, Tamm T (2007) Electrochemical properties of the polypyrrole films doped with benzenesulfonate. Synth Met 157:66–73CrossRefGoogle Scholar
  38. Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G (2015) Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces 7:15303–15313CrossRefPubMedGoogle Scholar
  39. Wang PC, Yu JY (2012) Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React Funct Polym 72:311–316CrossRefGoogle Scholar
  40. Wang YG, Cheng L, Xia YY (2006) Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. J Power Sources 153:191–196CrossRefGoogle Scholar
  41. Wang S, Pei B, Zhao X, Dryfe RAW (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2:530–536CrossRefGoogle Scholar
  42. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31CrossRefPubMedGoogle Scholar
  43. Xie B et al (2015) Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics. ACS Nano 9:5636–5645CrossRefPubMedGoogle Scholar
  44. Xiong Z, Liao C, Han W, Wang X (2015) Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater 27:4469–4475CrossRefPubMedGoogle Scholar
  45. Xu J et al (2015a) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org Electron 26:292–299CrossRefGoogle Scholar
  46. Xu J et al (2015b) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159CrossRefGoogle Scholar
  47. Xu J et al (2015c) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363CrossRefGoogle Scholar
  48. Xue J et al (2013) An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys Chem Chem Phys 15:8042–8045CrossRefPubMedGoogle Scholar
  49. Yang P et al (2014) Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 10:108–116CrossRefGoogle Scholar
  50. Yesi Y, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH (2016) Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9:370–378CrossRefPubMedGoogle Scholar
  51. Zhang B et al (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6:431–440CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yang Bo
    • 1
  • Yaping Zhao
    • 1
    • 2
  • Zaisheng Cai
    • 2
  • Addie Bahi
    • 3
  • Caihong Liu
    • 1
  • Frank Ko
    • 3
  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Key Laboratory of Science and Technology of Eco-TextileDonghua University, Ministry of EducationShanghaiChina
  3. 3.Department of Materials EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations