Advertisement

Cellulose

, Volume 25, Issue 7, pp 4043–4055 | Cite as

Cellulose paper grafted with polyamines as powerful adsorbent for heavy metals

  • Medy C. Nongbe
  • Guillaume Bretel
  • Tchirioua Ekou
  • Lynda Ekou
  • Benjamin K. Yao
  • Erwan Le Grognec
  • François-Xavier Felpin
Original Paper

Abstract

The preparation of new adsorbents for heavy metals consisting of cellulose paper grafted with polyamine moieties is described. The tosylation of pristine cellulose paper allowed the subsequent displacement of the tosylated leaving groups with either ethylenediamine or spermine provided the corresponding cellulose-based polyaminated adsorbents Cell-Ed and Cell-Sperm, respectively. Optimizations related to the influence of experimental conditions (time and pH) on the adsorption processes associated to detailed studies devoted to the understanding of the mechanism of adsorption through kinetic experiments and isotherm modeling provided a rational understanding for the removal Cu(II) and Pb(II). Interestingly, Cell-Sperm also displayed outstanding adsorption properties for other metal cations such as Cd(II), Zn(II) and Fe(II).

Graphical Abstract

Keywords

Cellulose paper Adsorbent Heavy metal Water purification Isotherm 

Notes

Acknowledgments

We gratefully acknowledge the University of Nantes, the “Centre National de la Recherche Scientifique” (CNRS), the “Région Pays de la Loire” in the framework of a “recrutement sur poste stratégique”. F.-X. Felpin. is a member of the “Institut Universitaire de France” (IUF). M.C. Nongbe thanks the ‘‘Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de Côte d’Ivoire” for a visiting grant in France. We acknowledge Christine Labrugère (PLACAMAT, University of Bordeaux), François-Xavier Lefèvre and Denis Loquet (CEISAM, University of Nantes) for XPS, SEM and elemental analyses, respectively. Michel Terray (Malvern Instruments) was of great help for conducting zeta potential analyses.

References

  1. Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian MJ (2013) Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 220:237–243.  https://doi.org/10.1016/j.cej.2013.01.021 CrossRefGoogle Scholar
  2. Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526.  https://doi.org/10.1016/j.jtice.2013.04.016 CrossRefGoogle Scholar
  3. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243.  https://doi.org/10.1016/S0304-3894(02)00263-7 CrossRefPubMedGoogle Scholar
  4. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479.  https://doi.org/10.1016/S0043-1354(98)00475-8 CrossRefGoogle Scholar
  5. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377.  https://doi.org/10.1016/j.arabjc.2010.07.019 CrossRefGoogle Scholar
  6. Choi S, Jeong Y (2008) The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite. Fibers Polym 9:267–270.  https://doi.org/10.1007/s12221-008-0042-0 CrossRefGoogle Scholar
  7. Coulibaly S, Atse BC, Koffi KM, Sylla S, Konan KJ, Kouassi NGJ (2012) Seasonal accumulations of some heavy metal in water, sediment and tissues of black-chinned tilapia Sarotherodon melanotheron from Biétri Bay in Ebrié Lagoon, Ivory Coast. Bull Environ Contam Toxicol 88:571–576.  https://doi.org/10.1007/s00128-012-0522-1 CrossRefPubMedGoogle Scholar
  8. d’Halluin M, Rull-Barrull J, Bretel G, Labrugère C, Le Grognec E, Felpin F-X (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973.  https://doi.org/10.1021/acssuschemeng.6b02768 CrossRefGoogle Scholar
  9. da Silva Filho EC, de Melo JCP, Airoldi C (2006) Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohydr Res 341:2842–2850.  https://doi.org/10.1016/j.carres.2006.09.004 CrossRefPubMedGoogle Scholar
  10. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229.  https://doi.org/10.1016/j.jhazmat.2008.01.024 CrossRefPubMedGoogle Scholar
  11. Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P (2002) Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Appl Surf Sci 196:356–365.  https://doi.org/10.1016/S0169-4332(02)00073-9 CrossRefGoogle Scholar
  12. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418.  https://doi.org/10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  13. Fujita S, Sakairi N (2016) Water soluble EDTA-linked chitosan as a zwitterionic flocculant for pH sensitive removal of Cu(II) ion. RSC Adv 6:10385–10392.  https://doi.org/10.1039/c5ra24175h CrossRefGoogle Scholar
  14. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536.  https://doi.org/10.1016/j.carbpol.2012.03.040 CrossRefPubMedGoogle Scholar
  15. Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via hetero Diels–Alder (HDA) cycloaddition. Biomacromol 12:1137–1145.  https://doi.org/10.1021/bm101461h CrossRefGoogle Scholar
  16. Gurgel LVA, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. Carbohydr Polym 77:142–149.  https://doi.org/10.1016/j.carbpol.2008.12.014 CrossRefGoogle Scholar
  17. Hegazi HA (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J 9:276–282.  https://doi.org/10.1016/j.hbrcj.2013.08.004 CrossRefGoogle Scholar
  18. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689.  https://doi.org/10.1016/j.jhazmat.2005.12.043 CrossRefPubMedGoogle Scholar
  19. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47.  https://doi.org/10.1016/j.cej.2013.02.054 CrossRefGoogle Scholar
  20. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173.  https://doi.org/10.1016/j.watres.2016.01.008 CrossRefPubMedGoogle Scholar
  21. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426.  https://doi.org/10.1016/j.scitotenv.2005.10.001 CrossRefPubMedGoogle Scholar
  22. Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247.  https://doi.org/10.1016/j.seppur.2004.08.002 CrossRefGoogle Scholar
  23. Li Y et al (2015) Simultaneous visual detection and removal of lead(II) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes. J Mater Chem A 3:18180–18189.  https://doi.org/10.1039/c5ta05030h CrossRefGoogle Scholar
  24. Nguyen TAH et al (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol 148:574–585.  https://doi.org/10.1016/j.biortech.2013.08.124 CrossRefPubMedGoogle Scholar
  25. Nongbe MC, Bretel G, Ekou L, Ekou T, Robitzer M, Le Grognec E, Felpin F-X (2018) Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose 25:1395–1411.  https://doi.org/10.1007/s10570-017-1647-5 CrossRefGoogle Scholar
  26. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724.  https://doi.org/10.1016/j.biortech.2008.01.036 CrossRefPubMedGoogle Scholar
  27. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539.  https://doi.org/10.1021/ja00905a001 CrossRefGoogle Scholar
  28. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064.  https://doi.org/10.1039/b808639g CrossRefPubMedGoogle Scholar
  29. Rull-Barrull J, d’Halluin M, Le Grognec E, Felpin F-X (2016a) Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chem Commun 52:2525–2528.  https://doi.org/10.1039/c5cc09889k CrossRefGoogle Scholar
  30. Rull-Barrull J, d’Halluin M, Le Grognec E, Felpin F-X (2016b) A paper-based biomimetic device for the reduction of Cu(II) to Cu(I)—application to the sensing of Cu(II). Chem Commun 52:6569–6572.  https://doi.org/10.1039/c6cc02305c CrossRefGoogle Scholar
  31. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027.  https://doi.org/10.1016/j.biortech.2007.11.064 CrossRefPubMedGoogle Scholar
  32. Takahashi S-I, Fujimoto T, Barua BM, Miyamoto T, Inagaki H (1986) 13C-NMR spectral studies on the distribution of substituents in some cellulose derivatives. J Polym Sci Pol Chem 24:2981–2993.  https://doi.org/10.1002/pola.1986.080241125 CrossRefGoogle Scholar
  33. Torres JD, Faria EA, Prado AGS (2006) Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine. J Hazard Mater 129:239–243.  https://doi.org/10.1016/j.jhazmat.2005.08.034 CrossRefPubMedGoogle Scholar
  34. Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948.  https://doi.org/10.1016/j.biortech.2007.06.011 CrossRefPubMedGoogle Scholar
  35. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solutions. J Sanit Eng Div 89:31–60Google Scholar
  36. Yang R, Aubrecht KB, Ma H, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium(VI) and lead(II) adsorption. Polymer 55:1167–1176.  https://doi.org/10.1016/j.polymer.2014.01.043 CrossRefGoogle Scholar
  37. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013a) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943.  https://doi.org/10.1016/S1001-0742(12)60145-4 CrossRefGoogle Scholar
  38. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013b) Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydr Polym 92:380–387.  https://doi.org/10.1016/j.carbpol.2012.09.050 CrossRefPubMedGoogle Scholar
  39. Zhou D, Zhang L, Zhou J, Guo S (2004) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650.  https://doi.org/10.1016/j.watres.2004.03.026 CrossRefPubMedGoogle Scholar
  40. Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762.  https://doi.org/10.1016/j.watres.2005.06.033 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAMUniversité de NantesNantes Cedex 3France
  2. 2.Laboratoire de Thermodynamique et de Physico-Chimie du MilieuUniversité Nangui AbrogouaAbidjan 02Côte d’Ivoire
  3. 3.Laboratoire de Procédés Industriels, de Synthèse, de l’Environnement et des Energies NouvellesInstitut National Polytechnique Houphouët BOIGNYYamoussoukroCôte d’Ivoire
  4. 4.Institut Universitaire de FranceParis Cedex 05France

Personalised recommendations