Skip to main content
Log in

Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Aiming to achieve heavy metal adsorption in water and soil environments, a montmorillonite rich bentonite was graft-copolymerized with chitosan, and the obtained composite material was evaluated as a metal immobilizing agent for remediating metal contaminated soil. The graft-copolymerization reaction in the composite was confirmed by scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Batch adsorption studies with varying experimental conditions, such as adsorbent amount, pH and metal concentration, were conducted to assess the metal adsorption capacity of the composite. The adsorption pattern followed the Langmuir isotherm model, and maximum monolayer capacity was 88.5, 72.9, 51.5 and 48.5 mg g−1 for Cu, Zn, Cd and Ni, respectively. Amendment of a contaminated soil with the composite enhanced the metal retention capacity by 3.4, 3.2, 4.9 and 5.6-fold for Cu, Zn, Cd and Ni, respectively, over unamended soil. The desorption percentage of metals from the composite treated soil was significantly lower than the unamended contaminated soil. The findings indicated that immobilization of heavy metals in soils could be achieved by the chitosan–bentonite, which would potentially be an inexpensive and sustainable environmental remediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel KMA, Mahmoud GA, El-Kelesh NA (2012) Synthesis and characterization of poly-methacrylic acid grafted chitosan-bentonite composite and its application for heavy metals recovery. Chem Mater Res 2:1–12

    Google Scholar 

  • Arabyarmohammadi H, Darban AK, Abdollahy M, Yong R, Ayati B, Zirakjou A, van der Zee SEATM (2018) Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment. J Polym Environ 26(5):2107–2119

    Article  CAS  Google Scholar 

  • Azarova YA, Pestov AV, Bratskaya SY (2016) Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose 23(4):2273–2289

    Article  CAS  Google Scholar 

  • Azzam EMS, Eshaq G, Rabie AM, Bakr AA, Abd-Elaal AA, El Metwally AE, Tawfik SM (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 89:507–517

    Article  CAS  PubMed  Google Scholar 

  • Bogusz A, Oleszczuk P, Dobrowolski R (2017) Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environ Geochem Health. https://doi.org/10.1007/s10653-017-0036-1

    Article  PubMed  Google Scholar 

  • Bolan N, Kunhikrishna A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils- to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Bulut B, Karaer K (2014) Removal of methylene blue from aqueous solution by crosslinked chitosan-g-poly (acrylic acid)/bentonite composite. Chem Eng Commun 202(12):1635–1644

    Article  CAS  Google Scholar 

  • Costa MPM, Ferreira ILM, Cruz MTM (2016) New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydr Polym 146:123–130

    Article  CAS  PubMed  Google Scholar 

  • Davari M, Rahnemaie R, Homaee M (2015) Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils. Environ Sci Pollut Res 22:13024–13032

    Article  CAS  Google Scholar 

  • Duan L, Hu N, Wang T, Wang H, Ling L, Sun Y, Xie X (2016) Removal of copper and lead from aqueous solution by adsorption onto cross-linked chitosan/montmorillonite nanocomposites in the presence of hydroxyl–aluminum oligomeric cations: equilibrium, kinetic, and thermodynamic studies. Chem Eng Commun 203(1):28–36

    Article  CAS  Google Scholar 

  • Dutta S, Singh S (2014) Assessment of ground water and surface water quality around industrial area affected by textile dyeing and printing effluents, Pali, Rajasthan, India. J Environ Res Dev 8:574–581

    Google Scholar 

  • El-Dib FI, Tawfik FM, Hefni HHH, Eshaq GH, ElMetwally AE (2016) Remediation of distilleries wastewater using chitosan immobilized bentonite and bentonite based organoclays. Int J Biol Macromol 86:750–755

    Article  CAS  PubMed  Google Scholar 

  • El-Sherif H, El-Masry M (2011) Superabsorbent nanocomposite hydrogels based on intercalation of chitosan into activated bentonite. Polym Bull 66:721–734

    Article  CAS  Google Scholar 

  • Etemadi O, Petrisor IG, Kim D, Wan M-W, Yen TF (2003) Stabilization of metals in subsurface by biopolymers: laboratory drainage flow studies. Soil Sediment Contam 12:647–661

    Article  CAS  Google Scholar 

  • Fernández-Pazos MT, Garrido-Rodriguez B, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez E (2013) Cr(VI) Adsorption and desorption on soils and biosorbents. Water Air Soil Pollut 224:1366–1378

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Forján R, Asensio V, Rodríguez-Vila A, Covelo EF (2016) Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. CATENA 137:120–125

    Article  CAS  Google Scholar 

  • Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536

    Article  CAS  Google Scholar 

  • Futalan CM, Tsai WC, Lin SS, Hsien KJ, Dalida ML, Wan MW (2012) Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary system. Sustain Environ Res 22(6):345–355

    CAS  Google Scholar 

  • Gomes PC, Fontes MPF, da Silva AG, Mendonca ED, Netto AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121

    Article  CAS  Google Scholar 

  • Grisdanurak N, Akewaranugulsiri S, Futalan CM, Tsai WC, Kan CC, Hsu CW, Wan MW (2012) The study of copper adsorption from aqueous solution using crosslinked chitosan immobilized on bentonite. J Appl Polym Sci 125:132–142

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharya KG (2016) Adsorption of metal ions by clays and inorganic solids. RSC Adv 4:28537–28586

    Article  Google Scholar 

  • Hafida FH, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747

    Google Scholar 

  • Jalali M, Moradi F (2013) Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environ Monit Assess 185(11):8831–8846

    Article  CAS  PubMed  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2011a) Binding of heavy metal contaminants onto chitosans—an evaluation for remediation of metal contaminated soil and water. J Environ Manag 92:2675–2682

    Article  CAS  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2011b) Chitosan as a potential soil amendment to remediate metal contaminated soil—a characterisation study. Colloids Surf B Biointerface 82:71–80

    Article  CAS  Google Scholar 

  • Kang K, Lee CG, Choi JW, Kim YK, Park SJ (2016) Evaluation of the use of sea sand, crushed concrete, and bentonite to stabilize trace metals and to interrupt their release from contaminated marine sediments. Water Air Soil Pollut 227:308–320

    Article  CAS  Google Scholar 

  • Krishna AK, Govil PK (2004) Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environ Geol 47(1):38–44

    Article  CAS  Google Scholar 

  • Kumararaja P, Manjaiah KM (2015) Adsorptive removal of Ni and Cd by bentonite from aqueous system. Ecol Environ Conserv 21:S265–S272

    Google Scholar 

  • Kumararaja P, Manjaiah KM, Datta SC, Shabeer TPA (2014) Potential of bentonite clay for heavy metal immobilization in soil. Clay Res 33(2):83–96

    Google Scholar 

  • Kumararaja P, Manjaiah KM, Datta SC, Sarkar B (2017) Remediation of metal contaminated soil by aluminium pillared bentonite: synthesis, characterisation, equilibrium study and plant growth experiment. Appl Clay Sci 137:115–122

    Article  CAS  Google Scholar 

  • Lewandowska K, Sionkowska A, Kaczmarek B, Furtos G (2014) Characterization of chitosan composites with various clays. Int J Biol Macromol 65:534–541

    Article  CAS  PubMed  Google Scholar 

  • Li P, Lang M, Wang XX, Zhang TL (2016) Sorption and desorption of copper and cadmium in a contaminated soil affected by soil amendments. CLEAN Soil Air Water 44:1547–1556

    Article  CAS  Google Scholar 

  • Lim JE, Sung JK, Sarkar B, Wang H, Hashimoto Y, Tsang DCW, Ok YS (2016) Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environ Geochem Health 39(2):431–441

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang B, Zhang L, Huan R (2015) Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Kor J Chem Eng 32(7):1314–1322

    Article  CAS  Google Scholar 

  • Luo J, Han G, Xie M, Cai Z, Wang X (2015) Quaternized chitosan/montmorillonite nanocomposite resin and its adsorption behaviour. Iran Polym J 24:531–539

    Article  CAS  Google Scholar 

  • Ma Y, Shi F, Wang Z, Wu M, Ma J, Gao C (2012) Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive. Desalination 286:131–137

    Article  CAS  Google Scholar 

  • Ming H, Naidu R, Sarkar B, Lamb DT, Liu Y, Megharaj M (2016) Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268:60–68

    Article  CAS  Google Scholar 

  • Moussout H, Ahlafi H, Aazza M, Zegaoui O, El Akili C (2016) Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan. Water Sci Technol 73(9):2199–2210

    Article  CAS  PubMed  Google Scholar 

  • Naidu R (2013) Recent advances in contaminated site remediation. Water Air Soil Pollut 224(12):1–11

    Google Scholar 

  • Ngah WWS, Teong LC, Toh RH, Hanafiah MAKM (2013) Comparative study on adsorption and desorption of Cu (II) ions by three types of chitosan–zeolite composites. Chem Eng J 223:231–238

    Article  CAS  Google Scholar 

  • Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FTIR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A 79:784–788

    Article  CAS  Google Scholar 

  • Pereira FAR, Sousa KS, Cavalkanti GRS, Fonseca MG, Antonio GS, Alves APM (2013) Chitosan-montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions. Int J Biol Macromol 61:471–478

    Article  CAS  PubMed  Google Scholar 

  • Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21(3):330–365

    Article  CAS  PubMed  Google Scholar 

  • Rafiei HR, Shirvani M, Ogunseitan OA (2016) Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite. Appl Water Sci 6:331–338

    Article  CAS  Google Scholar 

  • Rinklebe J, Shaheen SM (2015) Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil. Ecotoxicol Environ Saf 119:58–65

    Article  CAS  PubMed  Google Scholar 

  • Rusmin R, Sarkar B, Liu Y, McClure S, Naidu R (2015) Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads. Appl Surf Sci 353:363–375

    Article  CAS  Google Scholar 

  • Rusmin R, Sarkar B, Biswas B, Churchman J, Liu Y, Naidu R (2016) Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl Clay Sci 134:95–102

    Article  CAS  Google Scholar 

  • Saravanan D, Gomathi T, Sudha PN (2011) Sorption studies on heavy metal removal using chitin/bentonite biocomposite. Int J Biol Macromol 53:67–71

    Article  CAS  Google Scholar 

  • Sarkar S (2009) Preparation of nanocomposite polymer for slow release fertilizer. Ph.D. Thesis, Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi, India

  • Sarkar B, Naidu R, Rahman MM, Megharaj M, Xi Y (2012) Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. J Soils Sedim 12:704–712

    Article  CAS  Google Scholar 

  • Sastre J, Rauret G, Vedal M (2006) Effect of the cationic composition of sorption solution on the quantification of sorption–desorption parameters of heavy metals in soils. Environ Pollut 140:322–339

    Article  CAS  PubMed  Google Scholar 

  • Shaheen SM, Rinklebe J (2015) Impact of emerging and low-cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecol Eng 74:319–326

    Article  Google Scholar 

  • Shaheen SM, Tsadilas CD, Rinklebe J (2013) A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Adv Colloids Interfaces Sci 201–202:43–56

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J, Selim MH (2015a) Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int J Environ Sci Technol 12(9):2765–2776

    Article  CAS  Google Scholar 

  • Shaheen SM, Tsadilas CD, Rinklebe J (2015b) Immobilization of soil copper using organic and inorganic amendments. J Plant Nutr Soil Sci 178:112–117

    Article  CAS  Google Scholar 

  • Souza Braz A, Fernandes A, Ferreira J, Alleoni L (2013) Distribution coefficients of potentially toxic elements in soils from the eastern Amazon. Environ Sci Pollut Res 20:7231–7242

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Gayatri SR, Venkateswarlu B, Jakkula VS, Wani SP, Kundu S, Sahrawat KL, Rajasekha Rao BK, Marimuthu S, Gopala Krishna G (2014) Heavy metals concentration in soils under rainfed agro-ecosystems and their relationship with soil properties and management practices. Int J Environ Sci Technol 11(7):1959–1972

    Article  CAS  Google Scholar 

  • Tsadilas C, Shaheen SM, Samaras V, Gizas D, Hu Z (2009) Influence of fly ash application on copper and zinc sorption by acidic soil amended with sewage sludge. Commun Soil Sci Plant Anal 40:273–284

    Article  CAS  Google Scholar 

  • Tsai WC, Buscano SI, Kan CC, Futalan CF, Dalida MLP, Meng-Wei W (2016a) Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single- and multi-metal system. Desalination Water Treat 57:9799–9812

    Article  CAS  Google Scholar 

  • Tsai WC, de Luna MDG, Arriesgado HLPB, Futalan CM, Colades JI, Wan MW (2016b) Competitive fixed-bed adsorption of Pb(ii), Cu(ii), and Ni(ii) from aqueous solution using chitosan-coated bentonite. Int J Polym Sci. https://doi.org/10.1155/2016/1608939

    Article  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemos 82:1431–1437

    Article  CAS  Google Scholar 

  • Usman ARA (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 144:334–343

    Article  CAS  Google Scholar 

  • Wang H, Tang H, Liu Z, Zhang X, Hao Z, Liu Z (2014) Removal of cobalt (II) ion from aqueous solution by chitosan-montmorillonite. J Environ Sci 26:1879–1884

    Article  Google Scholar 

  • Xie Y, Wang A (2009) Study on superabsorbent composites XIX. Synthesis, characterization and performance of chitosan-g-poly (acrylic acid)/vermiculite superabsorbent composites. J Polym Res 16:143–150

    Article  CAS  Google Scholar 

  • Xiong X, Stagnitti F, Allinson G, Turoczy N, Li P, LeBlanc M, Cann MA, Doerr SH, Steenhuis TS, Parlange JY, de Rooij G, Ritsema CJ, Dekker LW (2005) Effect of clay amendments on adsorption and desorption of copper in water repellent soils. Aust J Soil Res 43:397–402

    Article  CAS  Google Scholar 

  • Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior. Carbohydr Polym 90(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Sun M, Kengara FO, Wang J, Ni N, Wang L, Song Y, Yang X, Li H, Hu F, Jiang X (2013) Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J Environ Sci 26:1661–1672

    Article  CAS  Google Scholar 

  • Yin Z, Cao J, Li Z, Qiu D (2015) Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation. Environ Sci Pollut Res Int 22(13):9668–9675

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. CarbohydrPolym 68:367–374

    CAS  Google Scholar 

  • Zhang C, Zhu MY, Zeng GM, Yu ZG, Cui F, Yang ZZ, Shen LQ (2016) Active capping technology: a new environmental remediation of contaminated sediment. Environ Sci Pollut Res 23(5):4370–4375

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Head, Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India for providing all the required facilities to carry out the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Manjaiah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumararaja, P., Manjaiah, K.M., Datta, S.C. et al. Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose 25, 3985–3999 (2018). https://doi.org/10.1007/s10570-018-1828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1828-x

Keywords

Navigation