Skip to main content
Log in

Surface cleaning of raw cotton fibers with atmospheric pressure air plasma

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, a possibility to use atmospheric pressure plasma treatment to clean cotton fibers surface was investigated. Dielectric barrier discharge (DBD) operating in air was used as plasma source. After plasma treatment, cotton fibers were characterized using several surface techniques: SEM, XPS, ATR-FTIR and zeta potential measurement; also wettability was evaluated using capillary height measurement. Results of investigation showed that plasma treatment primarily affects cuticle and primary wall of cotton which provides cleaning of the fibers surface. This caused increase of polar groups accessibility and better wettability of cotton samples. An attempt has been made to locate influence of plasma treatment on different structural layers of cotton fibers using different surface techniques. In addition, surface charge was investigated through measuring streaming potential and a connection was established between zeta potential and plasma treatment time. Furthermore, it was shown that measuring of zeta potential could be used as an additional technique to track changes and elucidate mechanisms of plasma treatment influence on cotton fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnhage T, Perwuelz A, Behary N (2016) Eco-innovative coloration and surface modification of woven polyester fabric using bio-based materials and plasma technology. Ind Crop Prod 86:334–341

    Article  CAS  Google Scholar 

  • Akerholm M, Hinterstoisser B, Salmen L (2004) Characterization of the crystaline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohyd Res 339:569–578

    Article  CAS  Google Scholar 

  • Baltazar-Y-Jimenez A, Bismarck A (2007) Surface modification of lignocellulosic fibres in atmospheric air pressure plasma. Green Chem 9:1057–1066

    Article  CAS  Google Scholar 

  • Bellmann C, Caspari A, Albrecht V, Loan Doan TT, Mader E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloid Surf A 267:19–23

    Article  CAS  Google Scholar 

  • Fan Q (2008) Fabric chemical testing. In: Hu J (ed) Fabric testing. Woodhead publishing in textiles: number 76. Woodhead Publishing Limited, Cambridge, pp 125–147

    Chapter  Google Scholar 

  • Ferrero F (2003) Wettability measurements on plasma treated synthetic fabrics by capillary rise method. Polym Test 22:571–578

    Article  CAS  Google Scholar 

  • Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibers by titration and XPS. Colloid Surf A 260:101–108

    Article  CAS  Google Scholar 

  • Fras Zemljic L, Volmajer J, Ristic T, Bracic M, Sauperl O, Kreze T (2014) Antimicrobial and antioxidant functionalization of viscose fabric using chitosan–curcumin formulations. Text Res J 84:819–830

    Article  CAS  Google Scholar 

  • Grancaric AM, Tarbuk A, Pusic T (2005) Electrokinetic properties of textile fabrics. Color Technol 121:221–227

    Article  CAS  Google Scholar 

  • Guo L, Campagne C, Perwuelz A, Leroux F (2009) Zeta potential and surface physico-chemical properties of atmospheric air-plasma-treated polyester fabrics. Text Res J 79:1371–1377

    Article  CAS  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:1–7

    Article  CAS  Google Scholar 

  • Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1:116–149

    Google Scholar 

  • Jinka S, Turaga U, Singh V, Behrens RL, Gumeci C, Korzeniewski C, Anderson T, Wolf R, Ramkumar S (2014) Atmospheric plasma effect on cotton nonwovens. Ind Eng Chem Res 53:12587–12593

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, fundamentals and analytical methods, vol I. Wiley-VCH Verlag GmbH, New York

    Book  Google Scholar 

  • Kolarova K, Vosmanska V, Rimpelova S, Svorcik V (2013) Effect of plasma treatment on cellulose fiber. Cellulose 20:953–961

    Article  CAS  Google Scholar 

  • Kostić M, Radić N, Obradović BM, Dimitrijević S, Kuraica MM, Škundrić P (2009) Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 6:58–67

    Article  CAS  Google Scholar 

  • Kramar A, Prysiazhnyi V, Dojčinović B, Mihajlovski K, Obradović BM, Kuraica MM, Kostić MM (2013) Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions—investigation of plasma aging effect. Surf Coat Technol 234:92–99

    Article  CAS  Google Scholar 

  • Lam CF, Kan CW, Ng SP, Chan CK (2015) Effect of plasma treatment on cotton desizing. Res J Text Appar 19:46–58

    Article  Google Scholar 

  • Li X, Qiu Y (2012a) The application of He/O2 atmospheric pressure plasma jet and ultrasound in desizing of blended size on cotton fabrics. Appl Surf Sci 258:7787–7793

    Article  CAS  Google Scholar 

  • Li X, Qiu Y (2012b) The effect of plasma pre-treatment on NaHCO3 desizing of blended sizes on cotton fabrics. Appl Surf Sci 258:4939–4944

    Article  CAS  Google Scholar 

  • Luxbacher T (2014) The Zeta guide Principles of the streaming potential technique. Anton Paar, Graz

    Google Scholar 

  • Nawalakhe R, Shi Q, Vitchuli N, Noar J, Caldwell JM, Breidt F, Bourham MA, Zhang X, McCord MG (2013) Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. J Appl Polym Sci 129:916–923

    Article  CAS  Google Scholar 

  • Nikolic T, Korica M, Milanovic JZ, Kramar AD, Petronijevic ZB, Kostic MM (2017) TEMPO-oxidized cotton as a substrate for trypsin immobilization: impact of functional groups on proteolytic activity and stability. Cellulose 24:1863–1875

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340:417–428

    Article  CAS  Google Scholar 

  • Oliveira FR, Zille A, Souto AP (2014) Dyeing mechanism and optimization of polyamide 6,6 functionalized with double barrier discharge (DBD) plasma in air. Appl Surf Sci 293:177–186

    Article  CAS  Google Scholar 

  • Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour Technol 99:7152–7159

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Gao Z, Sun J, Yao L, Qiu Y (2009) Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl Surf Sci 255:9458–9462

    Article  CAS  Google Scholar 

  • Peršin Z, Maver U, Pivec T, Maver T, Vesel A, Mozetič M, Stana-Kleinschek K (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohyd Polym 100:55–64

    Article  CAS  Google Scholar 

  • Pesacreta TC, Carlson LC, Triplett BA (1997) Atomic force microscopy of cotton fiber cell wall surfaces in air and water: quantitative and qualitative aspects. Planta 202:435–442

    Article  CAS  Google Scholar 

  • Prysiazhnyi V, Kramar A, Dojcinovic B, Zekic A, Obradovic BM, Kuraica MM, Kostic M (2013) Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose 20:315–325

    Article  CAS  Google Scholar 

  • Radic N, Obradovic BM, Kostic M, Dojčinović B, Hudcova M, Kuraica MM, Cernak M (2013) Deposition of gold nanoparticles on polypropylene nonwoven pretreated by dielectric barrier discharge and diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 33:201–218

    Article  CAS  Google Scholar 

  • Rashidi A, Shahidi S, Ghoranneviss M, Dalalsharifi S, Wiener J (2013) Effect of plasma on the zeta potential of cotton fabrics. Plasma Sci Technol 15:455–458

    Article  CAS  Google Scholar 

  • Ribitsch V, Stana-Kleinschek K, Kreze T, Strnad S (2001) The significance of surface charge and structure on the accessibility of cellulose fibres. Macromol Mater Eng 286:648–654

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Rahimi MK, Moghaddam MB, Wiener J (2010) Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 17:627–634

    Article  CAS  Google Scholar 

  • Široky J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloid Surf A 140:127–138

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Strnad S, Ribitch V (1999) Surface characterization and adsorption abilities of cellulose fibers. Polym Eng Sci 39:1412–1424

    Article  CAS  Google Scholar 

  • Sun S, Sun J, Yao L, Qiu Y (2011) Wettability and sizing property improvement of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Appl Surf Sci 257:2377–2382

    Article  CAS  Google Scholar 

  • Tarbuk A, Grancaric AM, Leskovac M (2014) Novel cotton cellulose by cationization during mercerization—part 2: the interface phenomena. Cellulose 21:2089–2099

    Article  CAS  Google Scholar 

  • Tian L, Nie H, Chatterton NP, Branford-White CJ, Qui Y, Zhu L (2011) Helium/oxygen atmospheric pressure plasma jet treatment for hydrophilicity improvement of grey cotton knitted fabric. Appl Surf Sci 257:7113–7118

    Article  CAS  Google Scholar 

  • Vesel A, Mozetic M, Strnad S, Peršin Z, Stana-Kleinschek K, Hauptman N (2010) Plasma modification of viscose textile. Vacuum 84:79–82

    Article  CAS  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes WR, Edwards JV, Hunter L, McAlister DD, Gamble GR (2007) Cotton Fibers. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. Taylor & Francis Group, London, pp 521–666

    Google Scholar 

  • Wang Q, Fan XR, Cui L, Wang P, Wu J, Chen J (2009) Plasma-Aided cotton bioscouring: Dielectric barrier discharge versus low-pressure oxygen plasma. Plasma Chem Plasma Process 29:399–409

    Article  CAS  Google Scholar 

  • Wong KK, Tao XM, Yuen CWM, Yeung KW (2001) Wicking properties of linen treated with low temperature plasma. Text Res J 71:49–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are very grateful to the Ministry of Education, Science and Technological development of the Republic of Serbia for financial support through Projects OI 172029 and OI 171034.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana D. Kramar or Mirjana M. Kostić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, A.D., Obradović, B.M., Vesel, A. et al. Surface cleaning of raw cotton fibers with atmospheric pressure air plasma. Cellulose 25, 4199–4209 (2018). https://doi.org/10.1007/s10570-018-1820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1820-5

Keywords

Navigation