Advertisement

Cellulose

, Volume 25, Issue 7, pp 3913–3925 | Cite as

Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO2 and nanofibrillated cellulose

  • Yongsheng Zhao
  • Wanbin Dang
  • Zhaoqing Lu
  • Junbo Deng
  • Yang Hao
  • Zhiping Su
  • Meiyun Zhang
Original Paper

Abstract

Aramid fiber-based composite paper is widely used as an engineering material that is often used in outdoor environments. This inevitably cause ultraviolet (UV) damage to aramid fibers. In this work, nanotitanium dioxide (nano-TiO2) was introduced to endow the composite a good UV-resistance while nanofibrillated cellulose (NFC) was used to disperse and deposit TiO2 nanoparticles onto aramid fibers by physical interaction. Firstly, TiO2 nanoparticles were treated by (γ-aminopropyl) triethoxysilane to achieve abundant amino-groups (–NH2), which can interact with hydroxyl groups (–OH) of NFC. The results showed that NFC can significantly suppress nano-TiO2 aggregation and result in a well-defined core–shell structure of TiO2 nanoparticles uniformly coated onto aramid fibers. Also, the bridge effect of NFC and the reinforcing effect of nano-TiO2 benefit the mechanical properties the aramid/NFC/TiO2 composite. The maximum tensile index (~ 16.42 N m/g) and maximum tearing index (~ 9.28 mN m2/g) of aramid/NFC/TiO2 composites increase by ~ 43.4 and ~ 26.1% in comparison with the control sample (~ 11.45 N m/g and ~ 7.36 mN m2/g), respectively. Meanwhile, the aramid/NFC/nano-TiO2 composite achieves a good UV-resistant property because of the dominant light-absorbing ability of well-dispersed TiO2 nanoparticles. Therefore, our work presents a green and damage-free approach to achieve high-performance aramid fiber composite especially with great UV resistance.

Graphical Abstract

Keywords

Nanofibrillated cellulose (NFC) UV resistance Aramid fiber composite Mechanical property 

Notes

Acknowledgments

The authors would like to acknowledge the financial support from the National Key Research and Development Plan (2017YFB0308300, 2016YFB0303300), Shaanxi Province Supporting Plan for Innovative Research (2017KCT-02), the National Natural Science Foundation of China (Grant No. 21704058), State Key Laboratory of Pulp and Paper Engineering (Project No. 201727) and Key Laboratory Research Project of Shaanxi Education Department (Project No. 18JS025).

Supplementary material

10570_2018_1818_MOESM1_ESM.docx (913 kb)
Supplementary material 1 (DOCX 912 kb)

References

  1. Abidi N, Cabrales L, Hequet E (2009) Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. Acs Appl Mater Interfaces 1(10):2141–2146CrossRefPubMedGoogle Scholar
  2. Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ et al (2002) Fiber-reinforced polymer composites for construction: state-of-the-art review. J Compos Constr 6(2):73–87CrossRefGoogle Scholar
  3. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645CrossRefGoogle Scholar
  4. Chen Q, Yakovlev NL (2010) Adsorption and interaction of organosilanes on TiO2, nanoparticles. Appl Surf Sci 257(5):1395–1400CrossRefGoogle Scholar
  5. Cheng D, Wen Y, An X, Zhu X, Ni Y (2016a) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohyd Polym 151:326–334CrossRefGoogle Scholar
  6. Cheng Z, Li B, Huang J, Chen T, Liu Y, Wang X et al (2016b) Covalent modification of aramid fibers’ surface via direct fluorination to enhance composite interfacial properties. Mater Des 106:216–225CrossRefGoogle Scholar
  7. Cheng D, He M, Ran J et al (2017) In situ reduction of TiO2, nanoparticles on cotton fabrics through polydopamine templates for photocatalysis and UV protection. Cellulose 25:1413–1424CrossRefGoogle Scholar
  8. Foruzanmehr M, Boulos L, Vuillaume PY et al (2017) The Effect of cellulose oxidation on interfacial bonding of nano-TiO2, coating to flax fibers. Cellulose 24(3):1–14CrossRefGoogle Scholar
  9. Gan WT, Liu Y, Gao LK et al (2017) Magnetic property, thermal stability, UV-resistance, and moisture absorption behavior of magnetic wood composites. Polym Composite 38(8):1649–1654CrossRefGoogle Scholar
  10. García JM, García FC, Serna F, de la Peña JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35(5):623–686CrossRefGoogle Scholar
  11. Gargano A, Pingkarawat K, Blacklock M, Pickerd V, Mouritz AP (2017) Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer composites used in naval ship structures. Compos Struct 171:306–316CrossRefGoogle Scholar
  12. Ghezelbash Z, Ashouri D, Mousavian S et al (2012) Surface modified Al2O3 in fluorinated polyimide/Al2O3 nanocomposites: synthesis and characterization. Bull Mater Sci 35(6):925–931CrossRefGoogle Scholar
  13. Gopal P, Dharani LR, Blum FD (1996) Hybrid phenolic friction composites containing Kevlar® pulp Part 1. Enhancement of friction and wear performance. Wear 193(2):199–206CrossRefGoogle Scholar
  14. Grujicic M, Bell WC, Glomski PS, Pandurangan B, Yen C-F, Cheeseman BA (2011) Filament-level modeling of aramid-based high-performance structural materials. J Mater Eng Perform 20(8):1401–1413CrossRefGoogle Scholar
  15. Gu J, Liang C, Zhao X, Gan B, Qiu H, Guo Y et al (2017a) Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol 139:83–89CrossRefGoogle Scholar
  16. Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H et al (2017b) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos Part A Appl Sci Manuf 94:209–216CrossRefGoogle Scholar
  17. Hang TTX, Dung NT, Truc TA et al (2015) Effect of silane modified nano ZnO on UV degradation of polyurethane coatings. Prog Org Coat 79:68–74CrossRefGoogle Scholar
  18. Ho TTT, Ko YS, Zimmermann T, Geiger T, Caseri W (2012) Processing and characterization of nanofibrillated cellulose/layered silicate systems. J Mater Sci 47(10):4370–4382CrossRefGoogle Scholar
  19. Hu JT, Gao QH, Lu X et al (2016) Significant improvement in thermal and UV resistances of UHMWPE fabric through in situ formation of polysiloxane-TiO2 hybrid layers. Acs Appl Mater Interfaces 8(35):23311–23320CrossRefPubMedGoogle Scholar
  20. Jang YW, Min BG, Yoon KH (2017) Enhancement in compressive strength and UV ageing-resistance of poly (p-phenylene benzobisoxazole) nanocomposite fiber containing modified polyhedral oligomeric silsesquioxane. Fiber Polym 18(3):575–581CrossRefGoogle Scholar
  21. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  22. Kamar NT, Drzal LT, Lee A, Askeland P (2017) Nanoscale toughening of carbon fiber reinforced/epoxy polymer composites (CFRPs) using a triblock copolymer. Polymer 111:36–47CrossRefGoogle Scholar
  23. Kanbargi N, Lesser AJ (2017) Improving adhesion between aramid fibers and natural rubber through morphological and synthetic modification of the fibers. J Appl Polym Sci 135:45520CrossRefGoogle Scholar
  24. Kim SH (2006) Dyeing characteristics and UV protection property of green tea dyed cotton fabrics. Fiber Polym 7(3):255–261CrossRefGoogle Scholar
  25. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14(4):1160–1165CrossRefGoogle Scholar
  26. Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z et al (2015) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354CrossRefGoogle Scholar
  27. Lu Z, Dang W, Zhao Y, Wang L, Zhang M, Liu G (2017a) RSC Adv 7(12):7293–7302CrossRefGoogle Scholar
  28. Lu Z, Hu W, Xie F, Hao Y (2017b) Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber. Cellulose 24(7):2827–2835CrossRefGoogle Scholar
  29. Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson L-S et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21(36):13991–13998CrossRefGoogle Scholar
  30. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog Org Coat 71(4):391–398CrossRefGoogle Scholar
  31. Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G et al (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloid Surface A 417:111–119CrossRefGoogle Scholar
  32. Patterson BA, Sodano HA (2016) Enhanced interfacial strength and UV-shielding of aramid fiber composites through ZnO nanoparticle sizing. ACS Appl Mater Interfaces 8(49):33963–33971CrossRefPubMedGoogle Scholar
  33. Ren J, Wang S, Gao C, Chen X, Li W, Peng F (2015) TiO2-containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22(1):593–602CrossRefGoogle Scholar
  34. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J et al (2009) Surface modification of TiO nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222–228CrossRefGoogle Scholar
  35. Sha LZ, Zhao HF (2013) Effect of surface modification process conditions on properties of aramid paper. Polym-Korea 37(2):196–203CrossRefGoogle Scholar
  36. Singh M, Kaushik A, Ahuja D (2016) Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohyd Polym 150:48–56CrossRefGoogle Scholar
  37. Song B, Meng LH (2013) Preparation and characterization of (POSS/TiO2)(n) multi-coatings based;on PBO fiber surface for improvement of UV resistance. Fiber Polym 14(3):375–381CrossRefGoogle Scholar
  38. Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19(4):1209–1223CrossRefGoogle Scholar
  39. Tsuzuki T, Wang X (2010) Nanoparticle coatings for UV protective textiles. Res JText Apparel 14(2):9–20CrossRefGoogle Scholar
  40. Wang CX, Du M, Lv JC, Zhou QQ, Ren Y, Liu GL et al (2015) Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions. Appl Surf Sci 349:333–342CrossRefGoogle Scholar
  41. Wang B, Duan Y, Zhang J (2016) Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties. Mater Des 103:330–338CrossRefGoogle Scholar
  42. Wen Y, Zhu X, Gauthier DE, An X, Cheng D, Ni Y et al (2015) Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 22(4):2499–2506CrossRefGoogle Scholar
  43. Xiao X, Liu X, Cao G, Zhang C, Xia L, Xu W et al (2015a) Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection. Polym Eng Sci 55(6):1296–1302CrossRefGoogle Scholar
  44. Xiao X, Liu X, Chen F et al (2015b) Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition. Acs Appl Mater Interfaces 7(38):21326–21333CrossRefPubMedGoogle Scholar
  45. Xing Y, Ding X (2010) UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol–gel surface modification. J Appl Polym Sci 103(5):3113–3119CrossRefGoogle Scholar
  46. Yan Y, Wang K, Wang Z et al (2017) Fabrication of homogeneous and enhanced soybean protein isolate-based composite films via incorporating TEMPO oxidized nanofibrillated cellulose stablized nano-ZnO hybrid. Cellulose 24(11):1–13CrossRefGoogle Scholar
  47. Yao LR, Zhao WT, Xu SQ et al (2013) The preparation of aramid paper and its properties. Adv Mater Res 796:290–293CrossRefGoogle Scholar
  48. Zhang H, Zhang J, Chen J, Hao X, Wang S, Feng X et al (2006) Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber. Polym Degrad Stab 91(11):2761–2767CrossRefGoogle Scholar
  49. Zhang S, He G, Liang G, Cui H, Zhang W, Wang B (2010) Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature. Appl Surf Sci 256(7):2104–2109CrossRefGoogle Scholar
  50. Zhang H, Liang G, Gu A, Li Y (2014) Facile preparation of hyperbranched polysiloxane-grafted aramid fibers with simultaneously improved UV resistance, surface activity, and thermal and mechanical properties. Ind Eng Chem Res 53(7):2684–2696CrossRefGoogle Scholar
  51. Zhao Y, Xu Z, Wang X, Lin T (2013) Super hydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286(286):364–370CrossRefGoogle Scholar
  52. Zhao HF, Zhu YB, Sha LZ (2014) Study of the relationship between characteristics of aramid fibrids and mechanical property of aramid paper using DSC. e-Polym 14(2):139–144Google Scholar
  53. Zhao Y, Si L, Wang L et al (2017) Tuning the mechanical properties of weakly phase-separated olefin block copolymer by establishing co-crystallization structure with the aid of linear polyethylene: the dependence on molecular chain length. CrystEngComm 19:2884–2893CrossRefGoogle Scholar
  54. Zhao Y, Dang W, Lu Z et al (2018) A novel mica-based composite with hybrid aramid fibers for electrical insulating applications: largely improved mechanical properties and moisture resistance. Polym Inte 67:204–211CrossRefGoogle Scholar
  55. Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J et al (2014) Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4):3606–3613CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentShaanxi University of Science and TechnologyXi’anChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Yantai Metastar Special Paper Co., LtdYantaiChina

Personalised recommendations