Skip to main content
Log in

Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Vegetable fibers have been used for a long time for oil sorption during spills. But the hydrophilic nature of plant fibers reduces their capacity to sorb oils. Cellulose aerogels have become a product of great interest in this area due to their high porosity, low specific mass and high surface area, in addition to cellulose’s abundance and sustainability. The objective of this study was to develop a hydrophobic aerogel from cellulose nanofibers obtained from furniture industry wastes (Pinus elliotii) processed via steam explosion acid hydrolysis for oil sorption. The work started with processing the waste (sawdust) by steam explosion with a mixture of nitric and acetic acid. The cellulose-rich fraction was then washed, ground and lyophilized. The obtained aerogel was made hydrophobic by vapor-phase deposition of methyltrimethoxysilane (MTMS). Sorption tests were performed for pure petroleum, pure vegetable oil and petroleum on water (heterogeneous medium). The cellulose-rich fraction had more than 90% of the original cellulose of the wood waste, while hemicellulose and lignin were completely removed. After lyophilization an aerogel of specific mass 0.046 ± 0.0013 g cm−3 and porosity 97.08 ± 0.08% was obtained. Hydrophobization yielded a contact angle of 138.78° ± 0.78°. The aerogel showed a high sorption capacity to both medium. Kinetic models in non-linear form indicated a better fit for experimental data by the pseudo-nth order model (n = 0.95) for petroleum and by pseudo-first order for vegetable oil. For heterogeneous medium (petroleum + water) the kinetic models showed that the sorption rate is governed by liquid film diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali N et al (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486

    Article  CAS  Google Scholar 

  • Al-Sahhaf T, Elkilani A, Fahim M (2011) Fundamentals of petroleum refining. Elsevier, New York

    Google Scholar 

  • American Soybean Association (2017) World vegetable oil consumption. Available at http://soystats.com/international-world-vegetable-oil-consumption/. Accessed 11 May 2017

  • Balloni CJV (2009) Caracterização Física e Química da Madeira de Pinus elliottii. Bachelor final paper (Graduate Degree, Industrial Wood Processing Engineering)—Universidade Estadual Paulista, Industrial Wood Processing Engineering Bachelor Program, Itapeva

  • Bansal P et al (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101(12):4461–4471

    Article  CAS  Google Scholar 

  • Bertuoli P et al (2014) Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Appl Clay Sci 87:46–51

    Article  CAS  Google Scholar 

  • Bonn Agreement (2016) The Bonn Agreement aerial operations handbook: the Bonn Agreement oil appearance code. London. https://www.bonnagreement.org/publications. Accessed 13 Sept 2017

  • Borsoi C, Zattera AJ, Ferreira CA (2016) Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Appl Surf Sci 364:123–132

    Article  Google Scholar 

  • Carpenter AW, De-Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    Article  CAS  Google Scholar 

  • de France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631

    Article  Google Scholar 

  • Doshi B, Sillanpää M, Kalliola S (2018) A review of bio-based materials for oil spill treatment. Water Res. 135:262–277

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Feng J et al (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Gert EV et al (2000) The features of nitric acid “mercerization”of cellulose. Cellulose 7(1):57–66

    Article  CAS  Google Scholar 

  • Glass NR et al (2011) Organosilane deposition for microfluidic applications. Biomicrofluidics 5(3):036501

    Article  Google Scholar 

  • Habibi MK et al (2016) Viscoelastic damping behavior of structural bamboo material and its microstructural origins. Mech Mater 97:184–198

    Article  Google Scholar 

  • Hillig É, Schneider VE, Pavoni ET (2009) Geração de resíduos de madeira e derivados da indústria moveleira em função das variáveis de produção. Produção 19(2):292–303

    Google Scholar 

  • Horst DJ et al (2014) HPLC mapping of second generation ethanol production with lignocelluloses wastes and diluted sulfuric hydrolysis. Acta Sci Technol 36(4):591–598

    Article  Google Scholar 

  • IPT—Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A (1988) Celulose e papel: Tecnologia de fabricação da pasta celulósica. 2nd edition São Paulo: Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A

  • Jacquet N et al (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54(10):2593–2598

    Article  CAS  Google Scholar 

  • Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul ASAP 22:935–969

    Article  CAS  Google Scholar 

  • Jungues J, Pirólise de madeira tratada com CCA em reator de leito fixo (2015) Dissertation (Master’s Degree, Process and Technology Engineering)—Universidade de Caxias do Sul, Postgraduate Program on Process and Technology Engineering, Caxias do Sul

  • Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5(31):16105–16117

    Article  CAS  Google Scholar 

  • Lavoine N et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Lazzari LK, Produção e caracterização de criogéis de celulose Pinus elliottiii para a adsorção de petróleo (2017) Dissertation (Master’s Degree, Process and Technology Engineering)—Universidade de Caxias do Sul, Postgraduate Program on Process and Technology Engineering, Caxias do Sul

  • Leão RM, Análise ambiental e técnica para a obtenção de nanocristais de celulose de bagaço da cana-de-açúcar aplicados em nanocompósitos (2016) Doctorate thesis (Mechanical Sciences)—Universidade de Brasília, Brasília

  • Li Z et al (2017) Rapidly degradable and sustainable polyhemiaminal aerogels for self-driven efficient separation of oil/water mixture. Ind Eng Chem Res 56(22):6508–6514

    Article  CAS  Google Scholar 

  • Lin R et al (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5(100):82027–82033

    Article  CAS  Google Scholar 

  • Macedo V, Desenvolvimento de Compósitos expandidos poliuretânicos com fibra de celulose e pó de madeira para utilização como sorvente de óleo (2015) Dissertation (Master’s Degree, Process and Technology Engineering)—Universidade de Caxias do Sul, Postgraduate Program on Process and Technology Engineering, Caxias do Sul

  • Maffessoni D, Meneguzzi A (2012) Diagnóstico da gestão dos resíduos de madeira e de chapas nas indústrias do Pólo Moveleiro de Bento Gonçalves. In: International congress of technologies for the environment vol 3, Bento Gonçalves

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24(3):1171–1197

    Article  CAS  Google Scholar 

  • Meng G et al (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym 18(4):706–712

    Article  CAS  Google Scholar 

  • Nwadiogbu JO, Ajiwe VIE, Okoye PAC (2016) Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: equilibrium and kinetic studies. J Taibah Univ Sci 10(1):56–63

    Article  Google Scholar 

  • Pinto J, Athanassiou A, Fragouli D (2016) Effect of the porous structure of polymer foams on the remediation of oil spills. J Phys D Appl Phys 49(14):145601

    Article  Google Scholar 

  • Pintor AMA et al (2016) Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies: a critical review. Chem Eng J 297:229–255

    Article  CAS  Google Scholar 

  • Poletto M et al (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  Google Scholar 

  • Romanzini D et al (2015) Sodium montmorillonite modified with methacryloxy and vinylsilanes: influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Appl Clay Sci 114:550–557

    Article  CAS  Google Scholar 

  • Salam DA, Suidan MT, Venosa AD (2016) Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: effect of antioxidants and oil composition. Sci Total Environ 547:95–103

    Article  CAS  Google Scholar 

  • Santander M, Rodrigues RT, Rubio J (2011) Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf A Physiochem 375:237–244

    Article  CAS  Google Scholar 

  • Scrimgeour C (2005) Chemistry of fatty acids. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. Wiley, New Jersey

    Google Scholar 

  • Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • SHELL (1986) The petroleum handbook. Elsevier, New York

    Google Scholar 

  • Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631

    Article  CAS  Google Scholar 

  • Sokker HH et al (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190(1–3):359–365

    Article  CAS  Google Scholar 

  • STATISTA INC, Global oil consumption from 1970–2015 (in million metric tons) (2017) https://www.statista.com/statistics/265261/global-oil-consumption-in-million-metric-tons/. Accessed 11 May 2017

  • Sun C (2005) True density of microcrystalline cellulose. J Pharm Sci 94(10):2132–2134

    Article  CAS  Google Scholar 

  • Tarrés Q et al (2016) Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose 23(5):3077–3088

    Article  Google Scholar 

  • Tran DNH et al (2015) Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environ Sci Water Res Technol 1(3):298–305

    Article  CAS  Google Scholar 

  • Tseng R et al (2014) A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-nth-order equation. Chem Eng J 237:153–161

    Article  CAS  Google Scholar 

  • Tuzzin G, Obtenção de nanofibras de celulose a partir de resíduos da indústria fumageira (2015). Dissertation (Master’s Degree, Process and Technology Engineering)—Universidade de Caxias do Sul, Postgraduate Program on Process and Technology Engineering, Caxias do Sul

  • Tuzzin G et al (2016) Nanofibrillated celulose from tobacco industry wastes. Carbohydr Polym 148:69–77

    Article  CAS  Google Scholar 

  • USGS, Deepwater Horizon MC252 Gulf Incident Oil Budget—Government Estimates (2017) http://www.noaanews.noaa.gov/stories2010/PDFs/DeepwaterHorizonOilBudget20100801.pdf. Accessed 21 Oct 2017

  • Wahi R et al (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63

    Article  CAS  Google Scholar 

  • Wang D et al (2012) Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels. Sep Purif Technol 99:28–35

    Article  CAS  Google Scholar 

  • Wang Z et al (2015) Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents. Chem Eng J 281:961–969

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1–3):1–8

    CAS  Google Scholar 

  • Xu F, Shi YC, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym 94(2):904–917

    Article  CAS  Google Scholar 

  • Yan J (2016) Reinforced MFC aerogel for heavy metal ions separation. In: 2016 International conference on civil, structure, environmental engineering, Guangzhou City, China

  • Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  CAS  Google Scholar 

  • Zimbardi F et al (2007) Acid impregnation and steam explosion of corn stover in batch processes. Ind Crops Prod 26(2):195–206

    Article  CAS  Google Scholar 

  • Zimmermann MVG et al (2015) Influence of chemical treatments on cellulose fibers for use as reinforcements in poly(ethylene-co-vinyl acetate) composites. Polym Compos 37:1991–2000

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge University of Caxias do Sul, the Post-Graduate Program in Process and Technology Engineering (PGEPROTEC) and the Ministry of Labor and Employment (MTE) for financial and laboratorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Godinho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2018_1781_MOESM1_ESM.docx

Supplementary material 1—Acid hydrolysis in steam explosion of furniture industry wood waste (120 °C/120 minutos) (DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, P.B., Godinho, M. & Zattera, A.J. Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose 25, 3105–3119 (2018). https://doi.org/10.1007/s10570-018-1781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1781-8

Keywords

Navigation