Advertisement

Cellulose

, Volume 25, Issue 6, pp 3229–3240 | Cite as

Rheological properties of cellulose nanocrystal-polymeric systems

  • Baoliang Peng
  • Juntao Tang
  • Pingmei Wang
  • Jianhui Luo
  • Peiwen Xiao
  • Yuanping Lin
  • Kam Chiu Tam
Original Paper
  • 332 Downloads

Abstract

Rod-like cellulose nanocrystals (CNC) were incorporated into different systems containing polymers (most of them are soluble polysaccharides, such as chitosan, gum arabic, sodium alginate, hydroxypropyl methylcellulose and sodium carboxylmethyl cellulose) of varying charge properties and molecular structures. The dependence of the thickening and rheological behavior of CNC dispersion with concentration were compared with classic models for spheres. It is evident that rod-like particles are more effective in achieving viscosity enhancement at lower particle loading. By varying the concentrations of each polymeric system, the phase diagrams of non-absorbing and absorbing polymers were determined. The gelation behavior of anisotropic CNC dispersion in the presence of various kinds of polymers was investigated, and the thickening effect has the following trends: cationic > anionic > nonionic. In addition, the molecular weight and conformation of the polymer chains had an impact on the viscosity. Hydroxypropyl methylcellulose is the most effective in promoting gelation of 3 wt% CNC dispersion. Understanding the rheological properties of various CNC-polymer complexes will be critical for their application in oil and gas, food and consumer goods.

Graphical Abstract

Keywords

Rod-like cellulose nanocrystal Thickening behavior Gelation behavior Rheological properties 

Notes

Acknowledgments

K. C. Tam would like to acknowledge the support from CFI and NSERC.

Supplementary material

10570_2018_1775_MOESM1_ESM.docx (334 kb)
Supplementary material 1 (DOCX 334 kb)

References

  1. Aubry T, Largenton B, Moan M (1999) Rheological study of fumed silica suspensions in chitosan solutions. Langmuir 15(7):2380–2383CrossRefGoogle Scholar
  2. Balazs AC, Emrick T, Russell TP (2002) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110CrossRefGoogle Scholar
  3. Boluk Y, Lahiji R, Zhao L et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A Physicochem Eng Asp 377(1):297–303CrossRefGoogle Scholar
  4. Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123CrossRefGoogle Scholar
  5. Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54(18):4762–4775CrossRefGoogle Scholar
  6. Chang Y, McLandsborough L, McClements DJ (2014) Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll 35:137–143CrossRefGoogle Scholar
  7. Derakhshandeh B, Petekidis G, Shafiei Sabet S et al (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheol 57(1):131–148CrossRefGoogle Scholar
  8. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications Chem. Rev. 110(6):3479–3500Google Scholar
  9. Hu Z, Cranston ED, Ng R et al (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692CrossRefGoogle Scholar
  10. Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76CrossRefGoogle Scholar
  11. Jeong J, Li C, Kwon Y et al (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36(8):2233–2241CrossRefGoogle Scholar
  12. Khouri S, Shams M, Tam KC (2014) Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. J Nanoparticle Res 16(7):2499CrossRefGoogle Scholar
  13. Li MC, Wu Q, Song K et al (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRefGoogle Scholar
  14. Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd Polym 84(1):316–322CrossRefGoogle Scholar
  15. Lu A, Hemraz U, Khalili Z et al (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21(3):1239–1250CrossRefGoogle Scholar
  16. Matheson RR Jr (1980) Viscosity of solutions of rigid rodlike macromolecules. Macromolecules 13(3):643–648CrossRefGoogle Scholar
  17. Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRefGoogle Scholar
  18. Pang Q, Tang J, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27(39):6021–6028CrossRefGoogle Scholar
  19. Peng BL, Dhar N, Liu HL et al (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRefGoogle Scholar
  20. Qiao C, Chen G, Zhang J et al (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocoll 55:19–25CrossRefGoogle Scholar
  21. Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82CrossRefGoogle Scholar
  22. Risica D, Barbetta A, Vischetti L et al (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982CrossRefGoogle Scholar
  23. Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751CrossRefGoogle Scholar
  24. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRefGoogle Scholar
  25. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359CrossRefGoogle Scholar
  26. Shi Z, Tang J, Chen L et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3(4):603–611CrossRefGoogle Scholar
  27. Tan BH, Tam KC, Lam YC et al (2004) A semi-empirical approach for modeling charged soft microgel particles. J Rheol 48(4):915–926CrossRefGoogle Scholar
  28. Tan BH, Pelton RH, Tam KC (2010) Microstructure and rheological properties of thermo-responsive poly (N-isopropylacrylamide) microgels. Polymer 51(14):3238–3243CrossRefGoogle Scholar
  29. Tanaka R, Saito T, Ishii D et al (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589CrossRefGoogle Scholar
  30. Tang J, Song Y, Berry RM et al (2014a) Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Adv 4(104):60249–60252CrossRefGoogle Scholar
  31. Tang J, Lee MFX, Zhang W et al (2014b) Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060CrossRefGoogle Scholar
  32. Tang J, Song Y, Tanvir S et al (2015a) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3(8):1801–1809CrossRefGoogle Scholar
  33. Tang J, Shi Z, Berry RM et al (2015b) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308CrossRefGoogle Scholar
  34. Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromol 17(5):1748–1756CrossRefGoogle Scholar
  35. Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409CrossRefGoogle Scholar
  36. ten Brinke AJW, Bailey L, Lekkerkerker HNW et al (2007) Rheology modification in mixed shape colloidal dispersions. Part I: pure components. Soft Matter 3(9):1145–1162CrossRefGoogle Scholar
  37. Tzoumaki MV, Moschakis T, Biliaderis CG (2011) Mixed aqueous chitin nanocrystal–whey protein dispersions: microstructure and rheological behavior. Food Hydrocoll 25(5):935–942CrossRefGoogle Scholar
  38. Tzoumaki MV, Moschakis T, Biliaderis CG (2013) Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydr Polym 95(1):324–331CrossRefGoogle Scholar
  39. Ureña-Benavides EE, Ao G, Davis VA et al (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRefGoogle Scholar
  40. Wu Q, Meng Y, Wang S et al (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):40525Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Baoliang Peng
    • 1
  • Juntao Tang
    • 2
    • 3
  • Pingmei Wang
    • 1
  • Jianhui Luo
    • 1
  • Peiwen Xiao
    • 1
  • Yuanping Lin
    • 4
  • Kam Chiu Tam
    • 3
  1. 1.Research Institute of Petroleum Exploration and Development (RIPED), Key Laboratory of Nano Chemistry (KLNC)PetroChinaBeijingChina
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  3. 3.Department of Chemical Engineering, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada
  4. 4.Yumen Oilfield Drilling and Production Engineering Research InstitutePetroChinaJiuquanChina

Personalised recommendations