Advertisement

Cellulose

, Volume 25, Issue 5, pp 2795–2815 | Cite as

Microcrystalline cellulose (MCC) analysis and quantitative phase analysis of ciprofloxacin/MCC mixtures by Rietveld XRD refinement with physically based background

  • B. Ramírez
  • L. Bucio
Original Paper
  • 456 Downloads

Abstract

Analysis of microcrystalline cellulose (MCC) PH-101, ciprofloxacin (CIP) and quantitative phase analysis of predetermined mixtures of CIP/MCC were performed by the Rietveld method with a physically based background. Correction factors for absorption and air scattering under a symmetrical reflection geometry with a given sample thickness, divergence and receiving slit width, scale factors, average temperature factors and specimen density of packing, were considered to model the background. By this way, the whole diffraction pattern was evaluated on a physical basis, considering the Bragg and the diffuse scattering (thermal diffuse scattering plus static disorder, Compton and air scattering) using a Python code. Compton scattering was also corrected for the bandpass function of the monochromator. Quantitative phase analysis is discussed on the scope of the results obtained. The maximum absolute difference in the weight% composition obtained was of 3.4% in the CIP/MCC mixtures.

Keywords

X-ray diffraction Background Microcrystalline cellulose Avicel PH-101 Rietveld refinement Pharmaceutical mixes Quantitative phase analysis 

Notes

Acknowledgments

The authors acknowledge Prof. Xim Bokhimi, Antonio Morales Espino and Alejandro Herrera from LAREC laboratory at IF-UNAM for the XRD facilities as well as the financial support from the graduate program in Materials Science (PCeIM-UNAM) and DGAPA-PAPIIT project IN-110918. B. Ramírez acknowledges CONACYT for a PhD grant. The valuable collaboration of Prof. Sandra García Medina (ENCB-IPN), Octavio Graniel, Samuel Tehuacanero C., J. Eduardo L. Barriguete are gratefully appreciated. The authors thank Editor-in-Chief Alfred French and the anonymous reviewers for their helpful comments on this paper.

References

  1. Advance Photon Source ANL (2013) Compute x ray absorption. http://11bm.xray.aps.anl.gov/absorb/absorb.php. Accesed Aug 2017
  2. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086.  https://doi.org/10.1007/s10570-016-0881-6 CrossRefGoogle Scholar
  3. Armbruster T, Bürgi HB, Kunz M, Gnos E, Brönnimann S, Lienert C (1990) Variation of displacement parameters in structure refinements of low albite. Am Miner 75:135–140Google Scholar
  4. Atalla R, Vanderhart DL (1984) Native cellulose. A composite of two distinct crystalline forms. Science 223:283–285.  https://doi.org/10.1126/science.223.4633.283 CrossRefGoogle Scholar
  5. Atalla R, Vanderhart DL (1987) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. IPC technical paper series international symposium on wood and pulping chemistry in Paris, France. http://hdl.handle.net/1853/2525
  6. Billinge SJL, Kanatzidis MG (2004) Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem Commun 7:749–760.  https://doi.org/10.1039/b309577k CrossRefGoogle Scholar
  7. Bolhuis GK, Chowhan ZT (1996) Materials for direct compaction. In: Alderborn G, Nyström C (eds) Pharmaceutical powder compaction technology. Marcel Dekker Inc., New York, pp 419–500Google Scholar
  8. Caglioti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3:223–228CrossRefGoogle Scholar
  9. Cromer DT, Mann JB (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallogr A 24:321–324.  https://doi.org/10.1107/S0567739468000550 CrossRefGoogle Scholar
  10. De Figueiredo LP, Ferreira FF (2014) The rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103:1394–1399CrossRefGoogle Scholar
  11. De la Torre AG, Bruque S, Aranda MAG (2001) Rietveld quantitative amorphous content analysis. J Appl Crystallogr 34:196–202.  https://doi.org/10.1107/S0021889801002485 CrossRefGoogle Scholar
  12. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192.  https://doi.org/10.1107/S0021889810043955 CrossRefGoogle Scholar
  13. Duchemin B (2017) Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program. Cellulose 24:2727–2741.  https://doi.org/10.1007/s10570-017-1318-6 CrossRefGoogle Scholar
  14. Dunitz JD, Schomaker V, Trueblood KN (1988) Interpretation of atomic displacement parameters from diffraction studies of crystals. J Phys Chem 92:856–867CrossRefGoogle Scholar
  15. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65.  https://doi.org/10.1021/bm700769p CrossRefGoogle Scholar
  16. Ergun S (1951) Determination of particle density of crushed porous solids gas flow method. Anal Chem 23:151–156.  https://doi.org/10.1021/ac60049a031 CrossRefGoogle Scholar
  17. Ergun S (1967) X-ray studies of carbon. In: Walker PL Jr (ed) Chemistry and physics of carbon, vol III. Marcel Dekker, New York, pp 211–288Google Scholar
  18. Farmacopea de los Estados Unidos Mexicanos (2016) 11th edition. ISBN: 978-607-460-454-2Google Scholar
  19. Fawcett TG, Crowder CE and Kabbekodu S (2011) Reference Materials for the study of polymorphism and crystallinity of cellulose. 10th annual pharmaceutical powder X-ray diffraction symposium—XRD training for the pharmaceutical scientist. 16–19 May 2011. Lyon, France. http://www.icdd.com/ppxrd/10/presentations/PPXRD-10_Tim_Fawcett.pdf
  20. Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Crystallogr 27:892–900CrossRefGoogle Scholar
  21. Fink HP, Philipp B, Paul D, Serimaa R, Paakkari T (1987) The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer 28:1265–1270.  https://doi.org/10.1016/0032-3861(87)90435-6 CrossRefGoogle Scholar
  22. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(885):896Google Scholar
  23. French AD (2018) Personal communicationGoogle Scholar
  24. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr. B72:171–179.  https://doi.org/10.1107/S2052520616003954 Google Scholar
  25. Gualtieri AF (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. J Appl Crystallogr 33:267–278.  https://doi.org/10.1107/S002188989901643X CrossRefGoogle Scholar
  26. Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506CrossRefGoogle Scholar
  27. Herms G, Hajdu F (1984) Non-focusing diffractometer for X-ray studies on weakly absorbing amorphous materials. J Appl Cryst 19:140–146.  https://doi.org/10.1107/S0021889884011201 CrossRefGoogle Scholar
  28. Ioelovitch M (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym 43:110–113.  https://doi.org/10.1002/actp.1992.010430212 CrossRefGoogle Scholar
  29. Kern A, Madsen IC, Scarlett NVY (2012) Quantifying Amorphous Phases. In: Kolb U, Shankland K, Meshi L, Avilov A, David W (eds) Uniting electron crystallography and powder diffraction. Springer, Berlin, pp 219–231. ISBN 978-94-007-5585-7CrossRefGoogle Scholar
  30. Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose micro fibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853.  https://doi.org/10.1039/c4cp00515e CrossRefGoogle Scholar
  31. Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015.  https://doi.org/10.1007/s10570-009-9298-9 CrossRefGoogle Scholar
  32. Mann J (1962) Modern methods of determining crystallinity in cellulose. Pure Appl Chem 5:91–106.  https://doi.org/10.1351/pac196205010091 CrossRefGoogle Scholar
  33. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Mag 15:21–29.  https://doi.org/10.1016/S0926-2040(99)00043-0 CrossRefGoogle Scholar
  34. Nichols JB (1954) X-ray and infrared studies on the extent of crystallization of polymers. J Appl Phys 25:840–847.  https://doi.org/10.1063/1.1721754 CrossRefGoogle Scholar
  35. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082.  https://doi.org/10.1021/ja0257319 CrossRefGoogle Scholar
  36. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306.  https://doi.org/10.1021/ja037055w CrossRefGoogle Scholar
  37. Nisizawa K (1973) Mode of action of cellulases. J Ferment Technol 51:267–304Google Scholar
  38. Oliveira RP, Driemeier C (2013) CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Crystallogr 46:1196–1210.  https://doi.org/10.1107/S0021889813014805 CrossRefGoogle Scholar
  39. Ottani S, Riello P, Polizzi S (1993) Complete sets of factors for absorption correction and air scattering subtraction in X-ray powder diffraction of loosely packed samples. Powder Differ 8:149–154.  https://doi.org/10.1017/S0885715600018078 CrossRefGoogle Scholar
  40. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10.  https://doi.org/10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  41. Riello P, Fagherazzi G, Clemente D, Canton P (1995) X-ray rietveld analysis with a physically based background. J Appl Crystallogr 28:115–120.  https://doi.org/10.1107/s002188989401037x CrossRefGoogle Scholar
  42. Riello P, Canton P, Fagherazzi G (1997) Calibration of the monochromator bandpass function for the X-ray Rietveld analysis. Powder Diffr 12:160–166.  https://doi.org/10.1017/s0885715600009647 CrossRefGoogle Scholar
  43. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71.  https://doi.org/10.1107/S0021889869006558 CrossRefGoogle Scholar
  44. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185.  https://doi.org/10.1107/S0365110X61003429 CrossRefGoogle Scholar
  45. Ruland W (1964) The separation of coherent and incoherent Compton X-ray scattering. Br J Appl Phys 15:1301–1307.  https://doi.org/10.1088/0508-3443/15/11/306 CrossRefGoogle Scholar
  46. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  47. Smith VH, Thakkar AJ, Chapman DC (1975) A new analytic approximation to atomic incoherent X-ray scattering intensities. Acta crystallogr. A 31:391–392.  https://doi.org/10.1107/s056773947500085x CrossRefGoogle Scholar
  48. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose i structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131Google Scholar
  49. Thomas et al (2015) Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biol 15:1.  https://doi.org/10.1186/s12870-015-0538-x CrossRefGoogle Scholar
  50. Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from A12O3. J Appl Cryst 20:79–83.  https://doi.org/10.1107/S0021889887087090 CrossRefGoogle Scholar
  51. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review. Int J Pharm 473:64–72.  https://doi.org/10.1016/j.ijpharm.2014.06.055 CrossRefGoogle Scholar
  52. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576.  https://doi.org/10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  53. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549.  https://doi.org/10.1107/S0021889813003531 CrossRefGoogle Scholar
  54. Wallace JW (1990) Cellulose derivatives and natural products utilized in pharmaceutics. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, vol 2. Marcel Dekker, New York, pp 319–337Google Scholar
  55. Ward K (1950) Crystallinity of cellulose and its significance for the fiber properties. Text Res J 20:363–372.  https://doi.org/10.1177/00405175500200060 CrossRefGoogle Scholar
  56. Warren BE (1990) X-ray diffraction. Dover Publications, Inc., New YorkGoogle Scholar
  57. Zugenmaier P (2008) Crystalline cellulose and derivatives. Characterization and structures. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Cristalofísica y Materiales Naturales, Instituto de FísicaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations