Advertisement

Cellulose

, Volume 25, Issue 4, pp 2515–2530 | Cite as

Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions

  • Sergey O. Ilyin
  • Veronika V. Makarova
  • Tatyana S. Anokhina
  • Victoria Y. Ignatenko
  • Tatiana V. Brantseva
  • Alexey V. Volkov
  • Sergey V. Antonov
Original Paper

Abstract

Phase separation of polymer solutions initiated by the addition of a nonsolvent is the main method for the preparation of polymer membranes. Depending on the application, such membranes must have a different pore size, which depends on the numerous parameters of the forming process. The liquid–liquid phase separation has been considered for cellulose solutions in N-methylmorpholine N-oxide (NMMO) interacting with various alcohols (methyl, ethyl, isopropyl, and isobutyl). Kinetics of cellulose regeneration was investigated by laser interferometry technique to understand the mechanism of cellulose film structure formation in the NMMO process. Influence of temperature, coagulant nature, and cellulose content on the process kinetics and morphology of the films was studied and corresponding interdiffusion coefficients were calculated. Based on the solubility parameters, triple phase diagrams of the systems were calculated. Formation of different morphologies was explained primarily by the different position of the composition path, the bimodal curve, and the gelation line in the phase diagrams. The second important parameter was the different rate of mutual diffusion of the NMMO and coagulants, due to the difference in the viscosity of the latter. Using methanol or ethanol as coagulation baths leads to obtaining the nanoporous structure of cellulose films, whereas isopropanol and isobutanol favors macropore formation.

Keywords

Cellulose N-methylmorpholine N-oxide Coagulation Interferometry Phase diagram Morphology Nanofiltration 

Notes

Acknowledgments

This research was supported by the Russian Science Foundation (Project No. 14-19-01775).

References

  1. Abe Y, Mochizuki A (2002) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. J Appl Polym Sci 84:2302–2307CrossRefGoogle Scholar
  2. Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of membranes prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339CrossRefGoogle Scholar
  3. Anderson JE, Ullman R (1973) Mathematical analysis of factors influencing the skin thickness of asymmetric reverse osmosis membranes. J Appl Phys 44:4303–4311CrossRefGoogle Scholar
  4. Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73(13):2681–2690CrossRefGoogle Scholar
  5. Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953CrossRefGoogle Scholar
  6. Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188CrossRefGoogle Scholar
  7. Boltzmann L (1894) Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten. Ann Phys 289(13):959–964CrossRefGoogle Scholar
  8. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55CrossRefGoogle Scholar
  9. Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215CrossRefGoogle Scholar
  10. Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164(1):89–110CrossRefGoogle Scholar
  11. Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440CrossRefGoogle Scholar
  12. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Progr Polym Sci 26(9):1473–1524CrossRefGoogle Scholar
  13. Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRefGoogle Scholar
  14. Gao J, Tang LG (1999) Cellulose science. Science Publ. Comp, BeijingGoogle Scholar
  15. Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose–N-methylmorpholine-N-oxide–water Solutions. Biomacromolecules 8:424–432CrossRefGoogle Scholar
  16. Golova LK (1996) Processing of cellulose via highly concentrated “solid solutions. Fibre Chem 28(1):5–16CrossRefGoogle Scholar
  17. Golova LK, Kulichikhin VG, Papkov SP (1986) Mechanism of dissolution of cellulose in non-aqueous dissolving systems. Review Polym Sci USSR 28(9):1995–2011CrossRefGoogle Scholar
  18. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  19. Hauru LK, Hummel M, King AW, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13(9):2896–2905CrossRefGoogle Scholar
  20. Ichwan M, Son TW (2012) Preparation and characterization of dense cellulose film for membrane application. J Appl Polym Sci 124(2):1409–1418CrossRefGoogle Scholar
  21. Ilyin SO, Makarova VV, Anokhina TS, Volkov AV, Antonov SV (2017) Effect of coagulating agent viscosity on the kinetics of formation, morphology, and transport properties of cellulose nanofiltration membranes. Polym Sci Ser A 59(5):676–684CrossRefGoogle Scholar
  22. Jie X, Cao Y, Lin B, Yuan Q (2004) Gas permeation performance of cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H2O system. J Appl Polym Sci 91(3):1873–1880CrossRefGoogle Scholar
  23. Krigbaum WR, Carpenter DK (1954) Phase equilibria in polymer–liquid 1–liquid 2 systems. J Polym Sci 14(75):241–259CrossRefGoogle Scholar
  24. Kulichikhin VG, Golova LK, Makarov IS, Bondarenko GN, Berkovich AK, Ilyin SO (2016) Cellulose–co-polyacrylonitrile blends: properties of combined solutions in N-metylmorpholine-N-oxide and the formation and thermolysis of composite fibers. Polym Sci Ser C 58(1):74–84CrossRefGoogle Scholar
  25. Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43(22):5827–5837CrossRefGoogle Scholar
  26. Li HJ, Cao YM, Qin JJ, Jie XM, Wang TH, Liu JH, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279(1):328–335CrossRefGoogle Scholar
  27. Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2):189–198CrossRefGoogle Scholar
  28. Lu Y, Wu Y (2008) Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front Chem Sci Eng 2:204–208CrossRefGoogle Scholar
  29. Mackie JS, Meares P (1955) The diffusion of electrolytes in a cation-exchange resin membrane. I. Theoretical. Proc R Soc Lond Ser A 232:498–509CrossRefGoogle Scholar
  30. Makarova V, Kulichikhin V (2011) Application of interferometry to analysis of polymer–polymer and polymer–solvent interactions. In: Padron I (ed) Interferometry—research and applications in science and technology. InTech, Rijeka, pp 395–436Google Scholar
  31. Malkin A, Askadsky A, Chalykh A, Kovriga V (1983) Experimental methods of polymer physics. Mir Publishers, MoscowGoogle Scholar
  32. Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2012) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46(1):257–266CrossRefGoogle Scholar
  33. Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1):1–22Google Scholar
  34. Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255CrossRefGoogle Scholar
  35. Mao Z, Cao Y, Jie X, Kang G, Zhou M, Yuan Q (2010) Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep Purif Technol 72(1):28–33CrossRefGoogle Scholar
  36. Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22(6):409–416CrossRefGoogle Scholar
  37. Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel-copper system). Jpn J Appl Phys 8(3):109–113Google Scholar
  38. Olsson C, Westman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven T, Godbout L (eds) Cellulose—fundamental aspects. Intech, Rijeka, pp 143–178Google Scholar
  39. Otero JA, Mazarrasa O, Villasante J, Silva V, Pradanos P, Calvo JI, Hernandez A (2008) Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 309:17–27CrossRefGoogle Scholar
  40. Pan ML, Li WJ, Wang MR, You C (2012) Preparation of the reed cellulose membrane by using NMMO Method. Adv Mater Res 538:128–131CrossRefGoogle Scholar
  41. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRefGoogle Scholar
  42. Robinson JP, Tarleton ES, Millington CR, Nijmeijer A (2004) Solvent flux through dense polymeric nanofiltration membranes. J Membr Sci 230:29–37CrossRefGoogle Scholar
  43. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progr Polym Sci 26(9):1763–1837CrossRefGoogle Scholar
  44. Scott RL (1949) The thermodynamics of high polymer solutions. IV. Phase equilibria in the ternary system: polymer–liquid 1–liquid 2. J Chem Phys 17(3):268–279CrossRefGoogle Scholar
  45. Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRefGoogle Scholar
  46. Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose—medical, pharmaceutical and electronic applications. InTech, Rijeka.  https://doi.org/10.5772/55178 Google Scholar
  47. Singh S, Khulbe KC, Matsuura T, Ramamurthy P (1998) Membrane characterization by solute transport and atomic force microscopy. J Membr Sci 142:111–127CrossRefGoogle Scholar
  48. Tsar’kov SE, Malakhov AO, Litvinova EG, Volkov AV (2013) Nanofiltration of dye solutions through membranes based on poly(trimethylsilylpropyne). Petrol Chem 53(7):537–545CrossRefGoogle Scholar
  49. Uddin AJ, Yamamoto A, Gotoh Y, Nagura M, Iwata M (2010) Preparation and physical properties of regenerated cellulose fibres from sugarcane bagasse. Text Res J 80(17):1846–1858CrossRefGoogle Scholar
  50. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31CrossRefGoogle Scholar
  51. van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263CrossRefGoogle Scholar
  52. Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204CrossRefGoogle Scholar
  53. Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204(1):185–194CrossRefGoogle Scholar
  54. Xiong X, Duan J, Zou W, He X, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membr Sci 363(1):96–102CrossRefGoogle Scholar
  55. Yushkin AA, Anokhina TS, Volkov AV (2015) Application of cellophane films as nanofiltration membranes. Petrol Chem 55(9):746–752CrossRefGoogle Scholar
  56. Zhang Y, Shao H, Wu C, Hu X (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1(4):141–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations