Skip to main content
Log in

Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein, we present a new process for the preparation of cellulose-chitosan foams using an aqueous lithium bromide (LiBr) solution. After obtaining hydrogels via dissolution-regeneration from an aqueous LiBr solution and methanol, cellulose-chitosan foams were prepared via solvent exchange (water → ethanol → t-butyl alcohol) followed by freeze-drying. The amino group content and elemental analysis confirmed the successful preparation of three foam grades by controlling the blend ratio of cellulose and chitosan. The cellulose-chitosan foams possessed three-dimensional porous networks composed of nano-fibrils. The swelling properties of the foams improved due to the presence of amino groups. The cellulose-chitosan foams exhibited a higher adsorption capacity (1170.2 mg/g) of Congo red compared to the cellulose (623.2 mg/g). The adsorption–desorption process of Congo red demonstrated the strong interactions between chitosan and Congo red. The cellulose-chitosan foams could be applied as an adsorbent for the treatment of industrial wastewater, especially for anionic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1:149–154

    Article  CAS  Google Scholar 

  • Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725

    Article  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloid Surf A 299:146–152

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour Technol 100:2803–2809

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806

    Article  CAS  Google Scholar 

  • Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481

    Article  Google Scholar 

  • Dawood S, Sen TK (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res 46:1933–1946

    Article  CAS  Google Scholar 

  • Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kimura S, Iwata T (2016) Soft, tough, and flexible curdlan hydrogels and organogels fabricated by covalent cross-linking. Polymer 100:143–148

    Article  CAS  Google Scholar 

  • Fierro V, Tornè-Fernández V, Montane D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesopor Mater 111:276–284

    Article  CAS  Google Scholar 

  • García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  • García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806

    Article  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    Article  CAS  Google Scholar 

  • Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  • Hou H, Zhou R, Wu P, Wu L (2012) Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J 211–212:336–342

    Article  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480

    Article  CAS  Google Scholar 

  • Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017a) Protein adsorption of dialdehyde cellulose-crosslinked chitosan withhigh amino group contents. Carbohydr Polym 163:34–42

    Article  CAS  Google Scholar 

  • Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017b) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528

    Article  CAS  Google Scholar 

  • Kim HJ, Yang YJ, Oh HJ, Kimura S, Wada M, Kim UJ (2017c) Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24:5079–5088

    Article  CAS  Google Scholar 

  • Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565

    Article  Google Scholar 

  • Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  • Kuga S, Kim DY, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:237–243

    Article  Google Scholar 

  • Kwak HW, Shin M, Yun H, Lee KH (2016) Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. Int J Mol Sci 17:1466

    Article  Google Scholar 

  • Lao L, Tan H, Wang Y, Gao C (2008) Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloid Surf B-Biointerfaces 66:218–225

    Article  CAS  Google Scholar 

  • Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117

    Article  CAS  Google Scholar 

  • Lian L, Guo L, Guo C (2009) Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazard Mater 229:126–131

    Article  Google Scholar 

  • Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352

    Article  CAS  Google Scholar 

  • Liu Z, Wang H, Li B, Liu C, Jiang Y, Yua G, Mu X (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J Mater Chem 22:15085–15091

    Article  CAS  Google Scholar 

  • Lorene-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40

    Article  Google Scholar 

  • Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid Surface A 278:175–187

    Article  CAS  Google Scholar 

  • Mansur HS, Costa-Júnior ES, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mat Sci Eng C-Mater 29:1574–1583

    Article  CAS  Google Scholar 

  • Mansur HS, Mansur AAP, Curti E, De Almeida MV (2013) Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 1:1696–1711

    Article  CAS  Google Scholar 

  • Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355:2472–2479

    Article  CAS  Google Scholar 

  • Meng G, Peng H, Wu J, Wang Y, Wang H, Liu Z, Guo X (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fiber Polym 18:706–712

    Article  CAS  Google Scholar 

  • Naito PK, Ogawa Y, Kimura S, Iwata T, Wada M (2015) Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J Polym Sci Poly Phys 53:1065–1069

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  Google Scholar 

  • Peng H, Wu J, Wang Y, Wang H, Liu Z, Shi Y, Guo X (2016) A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation. Appl Phys A 122:516

    Article  Google Scholar 

  • Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513

    Article  CAS  Google Scholar 

  • Prata AS, Grosso CRF (2015) Production of microparticles with gelatin and chitosan. Carbohydr Polym 116:292–299

    Article  CAS  Google Scholar 

  • Quignard F, Valentin R, Renzo FD (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310

    Article  CAS  Google Scholar 

  • Sakai K, Kobayashi Y, Saito T, Isogai A (2016) Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci Rep 6:20434

    Article  Google Scholar 

  • Samiey B, Dargahi MR (2010) Kinetics and thermodynamics of adsorption of congo red on cellulose. Open Chem 8:906–912

    CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H (1996) Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int J Biol Macromol 18:237–242

    Article  CAS  Google Scholar 

  • Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    Article  CAS  Google Scholar 

  • Stefanescu C, Daly WH, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87:435–443

    Article  CAS  Google Scholar 

  • Stievano M, Elvassore N (2005) High-pressure density and vapor–liquid equilibrium for the binary systems carbon dioxide–ethanol, carbon dioxide-acetone and carbon dioxide-dichloromethane. J Supercrit Fluid 33:7–14

    Article  CAS  Google Scholar 

  • Valentin R, Horga R, Bonelli B, Garrone E, Renzo FD, Quignard F (2005) Acidity of alginate aerogels studied by FTIR spectroscopy of probe molecules. Macromol Symp 230:71–77

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2007) Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2008a) Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater 160:173–180

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2008b) Adsorption properties of congo red from aqueous solution onto N, O-carboxymethyl-chitosan. Bioresour Technol 99:1403–1408

    Article  CAS  Google Scholar 

  • Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399

    Article  CAS  Google Scholar 

  • Woodcock S, Henrissat B, Sugiyama J (1995) Docking of Congo red to the surface of crystalline cellulose using molecular membrane. Biopolymers 36:201–210

    Article  CAS  Google Scholar 

  • Wu YB, Ye SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

  • Wu C, Scott J, Shea JE (2012) Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ9–40 peptide probed by molecular dynamics simulations. Biophys J 103:550–557

    Article  CAS  Google Scholar 

  • Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solution. Cellulose 21:1175–1181

    Article  CAS  Google Scholar 

  • Yuguchi Y, Hirotsu T, Hosokawa J (2005) Structural characteristics of xyloglucan–Congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2015R1D1A1A01058918 and NRF-2018R1A2B6002983).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ung-Jin Kim or Masahisa Wada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, UJ., Kim, D., You, J. et al. Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red. Cellulose 25, 2615–2628 (2018). https://doi.org/10.1007/s10570-018-1742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1742-2

Keywords

Navigation