Skip to main content
Log in

Influence of the matrix and polymerization methods on the synthesis of BC/PANi nanocomposites: an IGC study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Inverse gas chromatography (IGC) is a technique for evaluating surface properties. The current work emphasizes the use of IGC to evaluate the surface physicochemical changes during different bacterial cellulose (BC) processing methods as well as upon polyaniline (PANi) incorporation. The processing methods (oven-drying, freeze-drying, and regeneration) caused changes in the BC surface group distribution, where upon freeze-drying and regeneration, a more acidic behavior is obtained, compared to oven-drying (Kb/Ka decreased up to 24%). Through freeze-drying, the structural pore preservation increases (54%) the BC porosity, whereas through regeneration, the porosity decreases (23%), compared to BC oven-drying. Regarding the nanocomposites, with PANi incorporation, the overall properties evaluated by IGC were significantly changed. The \(\gamma_{\text{s}}^{\text{total}}\) increases up to 150%, indicating a more reactive surface in the nanocomposites. Also, is observed a sevenfold increase in the Kb/Ka and a less porous surface (up to 85%). Hence, the current work highlights the use of IGC as a viable technique to evaluate the physicochemical changes upon different BC modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso E, Faria M, Mohammadkazemi F, Resnik M, Ferreira A, Cordeiro N (2017) Conductive bacterial cellulose-polyaniline nanocomposites: influence of the matrix and synthesis conditions. Carbohydr Polym 183:254–262

    Article  Google Scholar 

  • Balard H (1997) Estimation of the surface energetic heterogeneity of a solid by inverse gas chromatography. Langmuir 13:1260–1269

    Article  CAS  Google Scholar 

  • Brendlé E, Papirer E (1997) A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation. J Colloid Interface Sci 194:207–216

    Article  Google Scholar 

  • Calvet R, Confetto S, Balard H, Brendlé E, Donnet J (2012) Study of the interaction of polybutadiene/fillers using inverse gas chromatography. J Chromatogr A 1253:164–170

    Article  CAS  Google Scholar 

  • Castro C, Cordeiro N, Faria M, Zuluaga R, Putaux J, Filpponen I, Velez L, Rojas O, Gañán P (2015) In-situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydr Polym 126:32–39

    Article  CAS  Google Scholar 

  • Conder J (2000) Physicochemical measurements: gas chromatography. In: Cooke M, Poole C (eds) Encyclopedia of separation science. Academic Press, Detroit, pp 3808–3815

    Chapter  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes A, Amico S (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117

    Article  CAS  Google Scholar 

  • Ferguson A, Khan U, Walsh M, Lee K, Bismarch A, Shaffer M, Coleman J, Bergin S (2016) Understanding the dispersion and assembly of bacterial cellulose in organic solvents. Biomacromolecules 17:1845–1853

    Article  CAS  Google Scholar 

  • Fowkes F (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52

    Article  CAS  Google Scholar 

  • Ghazali M, Nawawi M (2000) Diffusion coefficient estimations by thin-channel column inverse gas chromatography: preliminary experiments. Pertan J Sci Technol 8:1–18

    Google Scholar 

  • Goss K (1997) Considerations about the adsorption of organic moelcules from the gas phase to surfaces: implication for inverse gas chromatography and the prediction of adsorption coefficients. J Colloid Interface Sci 190:241–249

    Article  CAS  Google Scholar 

  • Gutmann V (1978) The donor-acceptor approach to molecular interactions. Springer, New York

    Book  Google Scholar 

  • Jackson P, Huglin M (1995) Use of inverse gas chromatography to measure diffusion coefficients in crosslinked polymers at different temperatures. Eur Polym J 31:63–65

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Alain D, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  • Moon R, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Schreiber H (1995) Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surf A Physicochem Eng Asp 100:47–71

    Article  CAS  Google Scholar 

  • Oss V (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic system. Chem Rev 88:927–941

    Article  Google Scholar 

  • Riddle F, Fowkes F (1990) Spectral shifts in acid-base chemistry. 1—Van der Waals contributions to acceptor numbers. J Am Soc 112:3259–3264

    Article  CAS  Google Scholar 

  • Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon-fibre epoxy composites. J Adhes 23:45–60

    Article  CAS  Google Scholar 

  • Sen A (2005) Inverse gas chromatography. Defense Scientific Information & Documentation Centre, New Delhi

    Google Scholar 

  • Thielmann F (2004) Introduction into the characterization of porous materials by inverse gas chromatography. J Chromatogr A 1037:115–123

    Article  CAS  Google Scholar 

  • Voelkel A, Strzemiecha B, Adamska K, Milczewska K (2009) Inverse gas chromatography as a source of physiochemical data. J Chromatogr A 1216:1551–1566

    Article  CAS  Google Scholar 

  • Walton K, Snurr R (2007) Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc 129:8552–8556

    Article  CAS  Google Scholar 

  • Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercacitor electrodes. J Phys Chem 116:13013–13019

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Programa Nacional de Re-equipamento Científico, POCI 2010, for sponsoring IGC work (FEDER and Foundation for Science and Technology). Moreover, the help of Tomásia Fernandes and Igor Fernandes (Madeira University) in the laboratory work was appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nereida Cordeiro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, E., Faria, M., Ferreira, A. et al. Influence of the matrix and polymerization methods on the synthesis of BC/PANi nanocomposites: an IGC study. Cellulose 25, 2343–2354 (2018). https://doi.org/10.1007/s10570-018-1736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1736-0

Keywords

Navigation