Skip to main content

Advertisement

Log in

Cellulose hydrogel film for spheroid formation of human adipose-derived stemcells

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstracts

Herein, we present a new process for the formation of cell spheroids in three-dimensional culture systems using cellulose hydrogel film. Transparent cellulose hydrogel film were prepared via dissolution-regeneration with a LiOH/urea aqueous solution and methanol. The cell viability of the cellulose hydrogel film was equivalent to that of cell tissue culture plate, revealing no cytotoxicity. Spheroids of human adipose-derived stem cells (hASCs) were successfully formed on cellulose hydrogel film. Spheroid size strongly depended on the cell seeding density and culture time, becoming larger with increases in both factors. Cell differentiation simultaneously progressed favorably with the spheroid formation of hASCs. These results suggested that cellulose hydrogel film could provide a new option with regard to tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118

    Article  CAS  Google Scholar 

  • Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  Google Scholar 

  • Ávila HM, Feldmann EM, Mieke Pleumeekers M, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJVM, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133

    Article  Google Scholar 

  • Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50:645–652

    Article  CAS  Google Scholar 

  • Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Wang L, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH-urea aqueous solution. Cellulose 14:205–215

    Article  CAS  Google Scholar 

  • Cheng NC, Estes BT, Awad HA, Guilak F (2008) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15:231–241

    Article  Google Scholar 

  • Cheng NC, Wang S, Young TH (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33:1748–1758

    Article  CAS  Google Scholar 

  • Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24:253–267

    Article  CAS  Google Scholar 

  • Desroches BR, Zhang P, Choi BR, King ME, Maldonado AE, Li W, Rago A, Liu G, Nath N, Hartmann KM, Yang B, Koren G, Morgan JR, Mende U (2012) Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am J Physiol Heart Circ Physiol 302:H2031–H2042

    Article  CAS  Google Scholar 

  • Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjugate Chem 26:1571–1581

    Article  CAS  Google Scholar 

  • Du Raine GD, Brown WE, Hu JC, Athanasiou KA (2015) Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng 43:543–554

    Article  Google Scholar 

  • Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  Google Scholar 

  • Fukuda J, Nakazawa K (2005) Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng 11:1254–1262

    Article  CAS  Google Scholar 

  • Funatsu K, Ijima H, Nakazawa K, Yamashita Y, Shimada M, Sugimachi K (2001) Hybrid artificial liver using hepatocyte organoid culture. Artif Organs 25:194–200

    Article  CAS  Google Scholar 

  • Garzoni LR, Adesse D, Soares MJ, Rossi MID, Borojevic R, de Meirelles MNL (2008) Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system. J Infect Dis 197:906–915

    Article  Google Scholar 

  • Gurumurthy B, Bierdeman PC, Janorkar AV (2016) Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 32:1270–1280

    Article  CAS  Google Scholar 

  • Hamilton GA, Westmoreland C, George E (2001) Effect of medium composition on the morphology of rat hepatocytes cultured as spheroids and monolayers. In Vitro Cell Dev Biol Anim 37:656–667

    Article  CAS  Google Scholar 

  • Hu JC, Athanasiou KA (2006) A self-assembling process in articular cartilage tissue engineering. Tissue Eng 12:969–979

    Article  CAS  Google Scholar 

  • Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  Google Scholar 

  • Ishihara K, Kitagawa T, Inoue Y (2015) Initial cell adhesion on well-defined surface by polymer brush llayers with varying chemical structures. ACS Biomater Sci Eng 1:103–109

    Article  CAS  Google Scholar 

  • Isobe N, Nishiyama Y, Kimura S, Wada M, Kuga S (2014) Origin of hydrophilicity of cellulose hydrogel from aqueous LiOH/urea solvent coagulated with alkyl alcohols. Cellulose 21:1043–1050

    Article  CAS  Google Scholar 

  • Kelm JM, Fussenegger M (2004) Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 22:195–202

    Article  CAS  Google Scholar 

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785

    Article  CAS  Google Scholar 

  • Kim HJ, Park SH, Durham J, Gimble JM, Kaplan DL, Dragoo JL (2012) In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds. J Tissue Eng 3:2041731412466405

    Article  Google Scholar 

  • Kim HJ, Braun HJ, Dragoo JL (2014) The effect of resveratrol on normal and osteoarthritic chondrocyte metabolism. Bone Joint Res 3:51–59

    Article  CAS  Google Scholar 

  • Kim HJ, Yang YJ, Oh HJ, Kimura S, Wada M, Kim UJ (2017a) Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24:5079–5088

    Article  CAS  Google Scholar 

  • Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017b) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  • Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2013) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23:380–392

    Article  Google Scholar 

  • Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou YR, Yliperttula ML, Urtti AO (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35:5110–5121

    Article  CAS  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  Google Scholar 

  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26

    Article  CAS  Google Scholar 

  • Salamon A, van Vlierberghe S, van Nieuwenhove I, Baudisch F, Graulus GJ, Benecke V, Alberti K, Neumann HG, Rychly J, Martins JC, Dubruel P, Peters K (2014) Gelatin-based hydrogels promote chondrogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Materials 7:1342–1359

    Article  Google Scholar 

  • Schneidera GB, English A, Abraham M, Zaharias R, Stanford C, Keller J (2004) The effect of hydrogel charge density on cell attachment. Biomaterials 25:3023–3028

    Article  Google Scholar 

  • Svenssona A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  Google Scholar 

  • Yamaguchi Y, Ohno J, Sato A, Kido H, Fukushima T (2014) Mesenchymal stem cell spheroids exhibit enhanced in vitro and in vivo osteoregenerative potential. BMC Biotechnol 14:105

    Article  Google Scholar 

  • Yamamoto M, Kawashima N, Takashino N, Koizumi Y, Takimoto K, Suzuki N, Saito M, Suda H (2014) Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells. Arch Oral Biol 59:310–317

    Article  CAS  Google Scholar 

  • Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solution. Cellulose 21:1175–1181

    Article  CAS  Google Scholar 

  • Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, Chang C, Wei Y, Zhang L (2017) Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27:1703174

    Article  Google Scholar 

  • Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104:158–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1D1A1A01058918 and NRF-2017R1D1A1B03030800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyeon Joo Kim or Ung-Jin Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Castañeda, R., Kang, T.H. et al. Cellulose hydrogel film for spheroid formation of human adipose-derived stemcells. Cellulose 25, 2589–2598 (2018). https://doi.org/10.1007/s10570-018-1732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1732-4

Keywords

Navigation