, Volume 25, Issue 4, pp 2393–2403 | Cite as

PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence

  • Tao Huang
  • Keiichi Kuboyama
  • Hayaka Fukuzumi
  • Toshiaki Ougizawa
Original Paper


Recently, cellulose nanofibers (CNFs) have been developed as a very popular renewable and biodegradable nanofiller material for polymer nanocomposites. However, achieving good dispersion in a polymer matrix for effective reinforcement is still a challenge because CNFs are hydrophilic, whereas most polymers are hydrophobic. In this study, we report the poly(methyl methacrylate)/2,2,6,6-tetramethylpiperidyl-1-oxyl oxidized CNFs (PMMA/TOCN) nanocomposites, which show good dispersion, improved mechanical properties, excellent transparency, as well as controllable birefringence using a simple surface-modification procedure of TOCN with amine-functionalized poly(ethylene glycol). Studies conducted using transmission electron microscopy and fourier transform infrared spectroscopy showed that TOCNs were homogenously dispersed in the PMMA matrix without aggregation due to the successful surface modification of TOCN. Moreover, the nanocomposites were highly transparent and the transmittance in the visible region was as high as approximately 90%. In addition, we firstly discovered that the birefringence of the nanocomposite could be controlled by the amount of TOCN added, even achieving zero birefringence. More importantly, the tensile strength and Young’s modulus of PMMA were significantly improved with the addition of TOCN. Such well-dispersed TOCN-based nanocomposites with high transparency, controllable birefringence and enhanced mechanical properties exhibit great potential for the applications in the optical devices and in the engineering field.


Nanocomposites PMMA TEMPO-oxidized cellulose nanofiber Transparency Birefringence 



The authors thank the Isogai lab at The University of Tokyo for providing the TOCN samples.

Supplementary material

10570_2018_1725_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 103 kb)


  1. Akkapeddi MK (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 21(4):576–585CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27CrossRefGoogle Scholar
  3. Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10(4):712–716CrossRefGoogle Scholar
  4. Carotenuto G, Nicolais L, Kuang X et al (1996) A method for the preparation of PMMA-SiO2 nanocomposites with high homogeneity. Appl Compos Mater 2(6):385–393CrossRefGoogle Scholar
  5. Castillo L, López O, López C et al (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95(2):664–674CrossRefGoogle Scholar
  6. Clayton LNM, Sikder AK, Kumar A et al (2005) Transparent poly (methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Func Mater 15(1):101–106CrossRefGoogle Scholar
  7. Džunuzović E, Marinović-Cincović M, Vuković J et al (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos 30(6):737–742CrossRefGoogle Scholar
  8. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1CrossRefGoogle Scholar
  9. Frka-Petesic B, Sugiyama J, Kimura S et al (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48(24):8844–8857CrossRefGoogle Scholar
  10. Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194CrossRefGoogle Scholar
  11. Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14(5):1541–1546CrossRefGoogle Scholar
  12. Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508CrossRefGoogle Scholar
  13. Gao Z, Xie W, Hwu JM et al (2001) The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Calorim 64(2):467–475CrossRefGoogle Scholar
  14. Gonçalves G, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934CrossRefGoogle Scholar
  15. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRefGoogle Scholar
  16. Huang W, Xu G (2010) Characterization of nano-Ag/PVP composites synthesized via ultra-violet irradiation. J Coal Sci Eng (China) 16(2):188–192CrossRefGoogle Scholar
  17. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  18. Jia Z, Wang Z, Xu C et al (1999) Study on poly (methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271(1–2):395–400CrossRefGoogle Scholar
  19. Khaled SM, Sui R, Charpentier PA et al (2007) Synthesis of TiO2–PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 23(7):3988–3995CrossRefGoogle Scholar
  20. Kim S, Wilkie CA (2008) Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol 19(6):496–506CrossRefGoogle Scholar
  21. Kim DO, Lee MH, Lee JH et al (2008) Transparent flexible conductor of poly (methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Org Electron 9(1):1–13CrossRefGoogle Scholar
  22. Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos A Appl Sci Manuf 42(11):1856–1861CrossRefGoogle Scholar
  23. Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRefGoogle Scholar
  24. Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297CrossRefGoogle Scholar
  25. Ohkita H, Tagaya A, Koike Y (2004a) Preparation of a zero-birefringence polymer doped with a birefringent crystal and analysis of its characteristics. Macromolecules 37(22):8342–8348CrossRefGoogle Scholar
  26. Ohkita H, Abe Y, Kojima H et al (2004b) Birefringence reduction method for optical polymers by the orientation-inhibition effect of silica particles. Appl Phys Lett 84(18):3534–3536CrossRefGoogle Scholar
  27. Oksman K, Mathew AP, Bondeson D et al (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRefGoogle Scholar
  28. Palkovits R, Althues H, Rumplecker A et al (2005) Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. Langmuir 21(13):6048–6053CrossRefGoogle Scholar
  29. Patnaik KSKR, Devi KS, Kumar VK (2010) Non-isothermal crystallization kinetics of polypropylene (PP) and polypropylene (PP)/talc nanocomposite. Int J Chem Eng Appl 1(4):346Google Scholar
  30. Philip B, Abraham JK, Chandrasekhar A et al (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935CrossRefGoogle Scholar
  31. Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRefGoogle Scholar
  32. Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888CrossRefGoogle Scholar
  33. Seydibeyoğlu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914CrossRefGoogle Scholar
  34. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Technol 100(24):6496–6504CrossRefGoogle Scholar
  35. Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104(2–3):367–372CrossRefGoogle Scholar
  36. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  37. Tagaya A, Koike Y (2012) Compensation and control of the birefringence of polymers for photonics. Polym J 44(4):306–314CrossRefGoogle Scholar
  38. Tagaya A, Ohkita H, Mukoh M et al (2003) Compensation of the birefringence of a polymer by a birefringent crystal. Science 301(5634):812–814CrossRefGoogle Scholar
  39. Takaichi S, Saito T, Tanaka R et al (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose 21(6):4093–4103CrossRefGoogle Scholar
  40. Valandro SR, Lombardo PC, Poli AL et al (2014) Thermal properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites obtained by in situ photopolymerization. Mater Res 17(1):265–270CrossRefGoogle Scholar
  41. Yoo Y, Spencer MW, Paul DR (2011) Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites. Polymer 52(1):180–190CrossRefGoogle Scholar
  42. Zhu J, Start P, Mauritz KA et al (2002) Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polym Degrad Stab 77(2):253–258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tao Huang
    • 1
  • Keiichi Kuboyama
    • 1
  • Hayaka Fukuzumi
    • 1
  • Toshiaki Ougizawa
    • 1
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations