Cellulose

, Volume 25, Issue 4, pp 2151–2189 | Cite as

Advances in cellulose nanomaterials

  • Hanieh Kargarzadeh
  • Marcos Mariano
  • Deepu Gopakumar
  • Ishak Ahmad
  • Sabu Thomas
  • Alain Dufresne
  • Jin Huang
  • Ning Lin
Review Paper
  • 432 Downloads

Abstract

Research on nanocellulose has significantly increased over the past few decades, owing to the various attractive characteristics of this material, such as renewability, widespread availability, low density, excellent mechanical properties, economic value, biocompatibility, and biodegradability. Nanocellulose categorized into two main types, namely cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). In this review, we present the recent advances made in the production of CNFs and CNCs. In addition to the conventional mechanical and chemical treatments used to prepare CNFs and CNCs, respectively, other promising techniques as well as pretreatment processes have been also proposed in recent times, in an effort to design an economically efficient and eco-friendly production route for nanocellulose. Further, while the hydrophilic nature of nanocellulose limits its use in polymeric matrices and in some industrial applications, the large number of hydroxyl groups on the surface of nanocellulose provides a suitable platform for various kinds of modification treatments. The various chemical and physical surface treatment procedures reported for nanocellulose have been reviewed in this paper. Finally, in this review, we summarize the life cycle assessment studies conducted so far on nanocellulose, which quantify the environmental impact of nanocellulose products. The current paper is a comprehensive review of the recent literature on nanostructured cellulose.

Keywords

Cellulose nanofibril Cellulose nanocrystal Surface modification Life cycle assessment Production technique 

Notes

Acknowledgments

The authors, Ishak Ahmad and Hanieh Kargarzadeh, would like to thank the Universiti Kebangsaan Malaysia (UKM) and Ministry of Higher Education of Malaysia (MOHE) for providing Research Grants, GUP-2016-009 and DIP-2016-026 respectively, and also of the National Science Centre, Poland on the basis of the Decision Number 2016/23/B/ST8/03509 to make this research possible.

References

  1. A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, National Research Council of the National Academies. Washington, DC (2012)Google Scholar
  2. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  3. Abdul Khalil H, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  4. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRefGoogle Scholar
  5. Abitbol T, Marway H, Cranston ED (2014) Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord Pulp Pap Res J 29:46–57CrossRefGoogle Scholar
  6. Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources 6:3155–3165Google Scholar
  7. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefGoogle Scholar
  8. Anirudhan TS, Rejeena SR (2014) Poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-grafted nanocellulose/poly(vinyl alcohol) composite for the in vitro gastrointestinal release of amoxicillin. J Appl Polym Sci 1–2:40699Google Scholar
  9. Araki J (2013) Electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141CrossRefGoogle Scholar
  10. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRefGoogle Scholar
  11. Arvidsson R, Nguyen D, Svanstrom M (2015) Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49:6881–6890CrossRefGoogle Scholar
  12. Ashjaran A, Yazdanshenas ME, Rashidi A, Khajavi R, Rezaee A (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131CrossRefGoogle Scholar
  13. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures: their surface properties and interaction with water. Langmuir 25:7675–7685CrossRefGoogle Scholar
  14. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  15. Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659CrossRefGoogle Scholar
  16. Bae JH, Kim SH (2015) Alkylation of mixed micro- and nanocellulose to improve dispersion in polylactide. Polym Int 64:821–827CrossRefGoogle Scholar
  17. Bardet R, Belgacem NM, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018CrossRefGoogle Scholar
  18. Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14CrossRefGoogle Scholar
  19. Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2011) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRefGoogle Scholar
  20. Benkaddour A, Jradi K, Robert S, Daneault C (2013) Grafting of polycaprolactone on oxidized nanocelluloses by click chemistry. Nanomaterials 3:141–157CrossRefGoogle Scholar
  21. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  22. Bettaieb F, Khiari R, Hassan ML, Belgacem MN, Bras J, Dufresne A, Mhenni MF (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidoniaoceanica. Ind Crop Prod 72:175–182CrossRefGoogle Scholar
  23. Bharimalla AK, Deshmukh SP, Patil PG, Vigneshwaran N (2015) Energy efficient manufacturing of nanocellulose by chemo- and bio-mechanical processes: a review. World J Nano Sci Eng 5:204–212CrossRefGoogle Scholar
  24. Bhatti IA, Zia KM, Ali Z, Zuber M (2012) Modification of cellulosic fibers to enhance their dyeability using UV-irradiation. Carbohydr Polym 89:783–787CrossRefGoogle Scholar
  25. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRefGoogle Scholar
  26. Bonini C, Heux L, Cavaillé JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314CrossRefGoogle Scholar
  27. Borysiak S, Grząbka-Zasadzińska A (2016) Influence of the polymorphism of cellulose on the formation of nanocrystals and their application in chitosan/nanocellulose composites. J Appl Polym Sci 133.  https://doi.org/10.1002/app.42864
  28. Božič M, Vivod V, Kavčič S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351CrossRefGoogle Scholar
  29. Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120:438–445CrossRefGoogle Scholar
  30. Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90:1075–1080CrossRefGoogle Scholar
  31. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRefGoogle Scholar
  32. Chen W, Abe K, Uetani K, Yu H, Liu Y, Yano H (2014) Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21:1517–1528CrossRefGoogle Scholar
  33. Chen YW, Lee HV, Abd Hamid SB (2016) Preparation and characterization of cellulose crystallites via Fe(III)-, Co (II)-and Ni (II)-assisted dilute sulfuric acid catalyzed hydrolysis process. J Nano Res Trans Tech Publ 41:96–109Google Scholar
  34. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725CrossRefGoogle Scholar
  35. Chi K, Catchmark JM (2017) Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption. Cellulose 24:4845–4860CrossRefGoogle Scholar
  36. Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34CrossRefGoogle Scholar
  37. Chowdhury ZZ, Abd Hamid SB (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioResources 11:3397–3415Google Scholar
  38. Cobut A, Sehaqui H, Berglund LA (2014) Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. BioResources 9:3276–3289CrossRefGoogle Scholar
  39. Colombo L, Zoia L, Violatto MB, Previdi S, Talamini L, Sitia L, Nicotra F, Orlandi M, Salmona M, Recordati C, Bigini P (2015) Organ distribution and bone tropism of cellulose nanocrystals in living mice. Biomacromolecules 16:2862–2871CrossRefGoogle Scholar
  40. Coulibaly S, Roulin A, Balog S, Biyani MV, Foster EJ, Rowan SJ, Fiore GL, Weder C (2013) Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47:152–160CrossRefGoogle Scholar
  41. Couret L, Irle M, Belloncle C, Cathala B (2017) Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24:2125–2137CrossRefGoogle Scholar
  42. Crawshaw J, Bras W, Mant GR, Cameron RE (2002) Simultaneous SAXS and WAXS investigations of changes in native cellulose fiber microstructure on swelling in aqueous sodium hydroxide. J Appl Polym Sci 83:1209–1218CrossRefGoogle Scholar
  43. Cunha AG, Mougel JB, Cathala B, Berglund LA, Capron I (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335CrossRefGoogle Scholar
  44. Curran MA (2014) Strengths and limitations of life cycle assessment. In: Klopffer W (ed) Background and future prospects in life cycle assessment, LCA compendium—the complete world of life cycle assessment. Springer, Dordrecht, pp 189–206Google Scholar
  45. Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169CrossRefGoogle Scholar
  46. Davis NJ, Flitsch SL (1993) Selective oxidation of monosaccharide uronic acids derivatives to uronic acids. Tetrahedron Lett 34:1181–1184CrossRefGoogle Scholar
  47. de Castro DO, Bras J, Gandini A, Belgacem NM (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8CrossRefGoogle Scholar
  48. de Figueirêdo MCB, de Freitas Rosa M, Ugaya CML, de Souza MSM, da Silva Braid ACC, de Melo LFL (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139CrossRefGoogle Scholar
  49. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  50. de Menezes AJ, Longo E, Leite FL, Dufresne A (2014) Characterization of cellulose nanocrystals grafted with organic acid chloride of different sizes. J Renew Mater 2:306–313CrossRefGoogle Scholar
  51. De Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98CrossRefGoogle Scholar
  52. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997CrossRefGoogle Scholar
  53. Dhar P, Tarafder D, Kumar A, Katiyar V (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv 5:60426–60440CrossRefGoogle Scholar
  54. Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18CrossRefGoogle Scholar
  55. do Nascimento DM, Almeida JS, Vale MS, Leitão RC, Muniz CR, de Figueirêdo MCB, Morais JPS, de Freitas Rosa M (2016a) A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: proposition of technological pathways. Ind Crop Prod 93:66–75CrossRefGoogle Scholar
  56. do Nascimento DM, Dias AF, de Araújo Junior CP, de Freitas Rosa M, Morais JPS, de Figueirêdo MCB (2016b) A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: environmental assessment of technological pathways. Ind Crop Prod 93:58–65CrossRefGoogle Scholar
  57. Duda M, Shaw JS (1997) Life cycle assessment. Society 35:38–43CrossRefGoogle Scholar
  58. Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, BerlinGoogle Scholar
  59. Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23:277–286Google Scholar
  60. Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113:11069–11075CrossRefGoogle Scholar
  61. Eranna PB, Pandey KK, Nagarajappa GB (2016) A note on the effect of microwave heating on iodine-catalyzed acetylation of wood. J Wood Chem Technol 36:205–210CrossRefGoogle Scholar
  62. Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560CrossRefGoogle Scholar
  63. Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230CrossRefGoogle Scholar
  64. Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066CrossRefGoogle Scholar
  65. Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRefGoogle Scholar
  66. Flynn C, Byrne C, Meenan B (2013) Surface modification of cellulose via atmospheric pressure plasma processing in air and ammonia–nitrogen gas. Surf Coat Technol 233:108–118CrossRefGoogle Scholar
  67. Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447CrossRefGoogle Scholar
  68. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972CrossRefGoogle Scholar
  69. Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24:2775–2790CrossRefGoogle Scholar
  70. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391CrossRefGoogle Scholar
  71. Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanaoscale: review and recommendation. Int J Life Cycle Ass 17:259–303CrossRefGoogle Scholar
  72. Gilbertson LM, Wender BA, Zimmerman JB, Eckelman MJ (2015) Coordinating modeling and experimental research of engineered nanomaterials to improve life cycle assessment studies. Environ Sci Nano 2:669–682CrossRefGoogle Scholar
  73. Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois Ph (2011) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538CrossRefGoogle Scholar
  74. Gorgieva S, Vogrinčič R, Kokol V (2015) Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose. Cellulose 22:3541–3558CrossRefGoogle Scholar
  75. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRefGoogle Scholar
  76. Goussé C, Chanzy H, Cerrada M, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRefGoogle Scholar
  77. Grubb GF, Bakshi BR (2011) Life cycle of titanium dioxide nanoparticle production. J Ind Ecol 15:81–95CrossRefGoogle Scholar
  78. Guinee J (2001) Handbook on life cycle assessment: operational guide to the ISO standards. Int J Life Cycle Asses 6:311–313CrossRefGoogle Scholar
  79. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125CrossRefGoogle Scholar
  80. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  81. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRefGoogle Scholar
  82. Habibi Y, Lucia L, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  83. Hamid SBA, Zain SK, Das R, Centi G (2015) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355CrossRefGoogle Scholar
  84. Hao X, Shen W, Chen Z, Zhu J, Feng L, Wu Z, Wang P, Zeng X, Wu T (2015) Self-assembled nanostructured cellulose prepared by a dissolution and regeneration process using phosphoric acid as a solvent. Carbohydr Polym 123:297–304CrossRefGoogle Scholar
  85. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  86. Hassan ML, Moorefield CM, Elbatal HS, Newkome GR, Modarelli DA, Romano NC (2012) Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Mater Sci Eng B 177:350–358CrossRefGoogle Scholar
  87. He W, Jiang X, Sun F, Xu X (2014) Extraction and characterization of cellulose nanofibers from Phyllostachys nidularia Munro via a combination of acid treatment and ultrasonication. BioResources 9:6876–6887Google Scholar
  88. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference applied polymer symposia. Wiley, New York, pp 797–813Google Scholar
  89. Hervy M, Evangelisti S, Lettieri P, Lee KY (2015) Life cycle assessment of nanocellulose-reinforced advanced fiber composites. Compos Sci Technol 118:154–162CrossRefGoogle Scholar
  90. Hesas RH, Daud WMAW, Sahu J, Arami-Niya A (2013) The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J Anal Appl Pyrol 100:1–11CrossRefGoogle Scholar
  91. Hettegger H, Beaumont M, Potthast A, Rosenau T (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. Chemsuschem 9:75–79CrossRefGoogle Scholar
  92. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  93. Hietala M, Rollo P, Kekäläinen K, Oksman K (2014) Extrusion processing of green biocomposites: compounding, fibrillation efficiency, and fiber dispersion. J Appl Polym Sci 131:1–9CrossRefGoogle Scholar
  94. Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406CrossRefGoogle Scholar
  95. Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433CrossRefGoogle Scholar
  96. Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J Nanopart Res 17:1–14CrossRefGoogle Scholar
  97. Hohenthal C, Ovaskainen M, Bussini D, Sadocco P, Pajula T, Lehtinen H, Kautto J, Salmenkivi K (2012) Final assessment of nanoenhanced new products. VTT Technical Research Center of Finland, EspooGoogle Scholar
  98. Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interfaces Sci 439:139–148CrossRefGoogle Scholar
  99. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322CrossRefGoogle Scholar
  100. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980Google Scholar
  101. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innov Res Sci Eng Technol 2:5444–5451Google Scholar
  102. ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework, SwitzerlandGoogle Scholar
  103. ISO 14044 (2006) Environmental management—life cycle assessment—requirements and guidelines, SwitzerlandGoogle Scholar
  104. Iwamoto S, Nakagaito A, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112CrossRefGoogle Scholar
  105. Jazbec K, Šala M, Mozetič M, Vesel A, Gorjanc M (2015) Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties. J Nanomater 2015:25CrossRefGoogle Scholar
  106. Ji B, Tang P, Yan K, Sun G (2015) Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification. Carbohydr Polym 132:228–236CrossRefGoogle Scholar
  107. Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRefGoogle Scholar
  108. Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925CrossRefGoogle Scholar
  109. Jiang C, Oporto GS, Zhong T, Jaczynski J (2016) TEMPO nanofibrillated cellulose as template for controlled release of antimicrobial copper from PVA films. Cellulose 23:713–722CrossRefGoogle Scholar
  110. Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335CrossRefGoogle Scholar
  111. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307CrossRefGoogle Scholar
  112. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRefGoogle Scholar
  113. Kaith B, Kalia S (2008) Preparation of microwave radiation induced graft copolymers and their applications as reinforcing material in phenolic composites. Polym Compos 29:791–797CrossRefGoogle Scholar
  114. Kämäräinen T, Arcot LR, Johansson L-S, Campbell J, Tammelin T, Franssila S, Laine J, Rojas OJ (2016) UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose 23:1847–1857CrossRefGoogle Scholar
  115. Kamireddy SR, Li J, Tucker M, Degenstein J, Ji Y (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res 52:1775–1782CrossRefGoogle Scholar
  116. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  117. Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley, Germany, pp 1–50CrossRefGoogle Scholar
  118. Karunanithy C, Muthukumarappan K (2010) Effect of extruder parameters and moisture content of switchgrass, prairie cord grass on sugar recovery from enzymatic hydrolysis. Appl Biochem Biotechnol 162:1785–1803CrossRefGoogle Scholar
  119. Karunanithy C, Muthukumarappan K (2011) Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass—a response surface analysis. Biosyst Eng 109:37–51CrossRefGoogle Scholar
  120. Kekäläinen J (2013) Assesment of environmental impact with life cycle methods in nanotechnology industry. Dissertation, Univerity of JyväskyläGoogle Scholar
  121. Khafaga MR, Ali HE, El-Naggar AWM (2016) Antimicrobial finishing of cotton fabrics based on gamma irradiated carboxymethyl cellulose/poly(vinyl alcohol)/TiO2 nanocomposites. J Text Inst 107:766–773CrossRefGoogle Scholar
  122. Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58:7878–7885CrossRefGoogle Scholar
  123. Khan RA, Beck S, Dussault D, Salmieri S, Bouchard J, Lacroix M (2013) Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: effect of gamma radiation. J Appl Polym Sci 129:3038–3046CrossRefGoogle Scholar
  124. Khanna V, Bakshi BR, Lee LJ (2008) Assessing life cycle environmental implications of polymer nanocomposites. In: 2008 IEEE international symposium on electronics and the environment, 2008 ISEE. IEEE, pp 1–6Google Scholar
  125. Khanna V, Bakshi BR, Lee LJ (2008b) Carbon nanofiber production. J Ind Ecol 12:394–410CrossRefGoogle Scholar
  126. Khanna V, Bakshi BR, Lee LJ (2008c) Carbon nanofiber production: life cycle energy consumption and environmental impact. J Ind Ecol 12:394–410CrossRefGoogle Scholar
  127. Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7:274–280CrossRefGoogle Scholar
  128. Kim DY, Lee BM, Koo DH, Kang PH, Jeun JP (2016) Preparation of nanocellulose from a kenaf core using e-beam irradiation and acid hydrolysis. Cellulose 23:3039–3049CrossRefGoogle Scholar
  129. Kleiner Y, Gal’braikh L, Irklei V, Chernukhina A (2013) Properties of radiation-modified celluloses and their derivatives. Fibre Chem 45:17–20CrossRefGoogle Scholar
  130. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerforts M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 24:5438–5466CrossRefGoogle Scholar
  131. Klöpffer W (1997) Life cycle assessment. Environ Sci Pollut Res 4:223–228CrossRefGoogle Scholar
  132. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456CrossRefGoogle Scholar
  133. Kobayashi K, Kimura S, Togawa E, Wada M (2011) Crystal transition from cellulose II hydrate to cellulose II. Carbohydr Polym 86:975–981CrossRefGoogle Scholar
  134. Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290CrossRefGoogle Scholar
  135. Kontturi E, Meriluoto A, Nuopponen M (2012) Process for preparing micro- and nanocrystalline cellulose. Patent# WO2012127117A1Google Scholar
  136. Kose R, Kasai W, Kondo T (2011) Switching surface properties of substrates by coating with a cellulose nanofiber having a high adsorbability. Fiber 67:163–167CrossRefGoogle Scholar
  137. Kralisch D, Ott D, Gericke D (2015) Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem 17:123–145CrossRefGoogle Scholar
  138. Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42:3069–3075CrossRefGoogle Scholar
  139. Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98:1855–1859CrossRefGoogle Scholar
  140. Kurniawan H, Lai J-T, Wang M-J (2012) Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19:1975–1988CrossRefGoogle Scholar
  141. Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A (2014) Radiation grafting on natural films. Radiat Phys Chem 94:88–92CrossRefGoogle Scholar
  142. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208CrossRefGoogle Scholar
  143. Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J-M, Dubois P (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21:4195–4207CrossRefGoogle Scholar
  144. Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009a) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55CrossRefGoogle Scholar
  145. Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han SO (2009b) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82CrossRefGoogle Scholar
  146. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20Google Scholar
  147. Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun RC (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551–3566CrossRefGoogle Scholar
  148. Li ZQ, Zhou XD, Pei CH (2010) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater 59:725–737CrossRefGoogle Scholar
  149. Li J, Xiu H, Zhang M, Wang H, Ren Y, Ji Y (2013a) Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts. Curr Org Chem 17:1617–1623CrossRefGoogle Scholar
  150. Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013b) Nanocellulose life cycle assessment. ACS Sus Chem Eng 1:919–928CrossRefGoogle Scholar
  151. Li M, Wang L-J, Li D, Cheng Y-L, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143CrossRefGoogle Scholar
  152. Li M-C, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016CrossRefGoogle Scholar
  153. Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRefGoogle Scholar
  154. Lin N, Dufresne A (2014a) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  155. Lin N, Dufresne A (2014b) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393CrossRefGoogle Scholar
  156. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842CrossRefGoogle Scholar
  157. Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRefGoogle Scholar
  158. Liu L, Sun J, Cai C, Wang S, Pei H, Zhang J (2009) Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour Technol 100:5865–5871CrossRefGoogle Scholar
  159. Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422CrossRefGoogle Scholar
  160. Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265:115–123CrossRefGoogle Scholar
  161. Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567CrossRefGoogle Scholar
  162. Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006CrossRefGoogle Scholar
  163. Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10:497–504CrossRefGoogle Scholar
  164. Marcovich N, Auad M, Bellesi N, Nutt S, Aranguren M (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRefGoogle Scholar
  165. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806CrossRefGoogle Scholar
  166. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85:228–236CrossRefGoogle Scholar
  167. Martínez-Sanz M, Abdelwahab MA, Lopez-Rubio A, Lagaron JM, Chiellini E, Williams TG, Wood DF, Orts WJ, Imam SH (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polym J 49:2062–2072CrossRefGoogle Scholar
  168. Martoïa F, Perge C, Dumont P, Orgéas L, Fardin M, Manneville S, Belgacem MN (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755CrossRefGoogle Scholar
  169. Meyer DE, Curran MA, Gonzalez MA (2011) An examination of silver nanoparticles in socks using screening-level life cycle assessment. J Nanopart Res 13:147–156CrossRefGoogle Scholar
  170. Mihailović D, Šaponjić Z, Radoičić M, Lazović S, Baily C, Jovančić P, Nedeljković J, Radetić M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18:811–825CrossRefGoogle Scholar
  171. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRefGoogle Scholar
  172. Moawia RM, Nasef MM, Mohamed NHF, Ripin A (2016) Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate. Radiat Phys Chem 122:35–42CrossRefGoogle Scholar
  173. Mohamed M, Salleh W, Jaafar J, Asri S, Ismail A (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849CrossRefGoogle Scholar
  174. Mohd NH, Hadina Ismail NF, Zahari JI, Wan Fathilah WF, Kargarzadeh H, Ramli S, Ahmad I, Yarmo MA, Othman R (2016) Effect of aminosilane modification on nanocrystaline cellulose properties. J. Nanomater 2016:1–8CrossRefGoogle Scholar
  175. Moign A, Vardelle A, Themelis N, Legoux J (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205:668–673CrossRefGoogle Scholar
  176. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  177. Nagalakshmaiah M, El Kissi N, Dufresne A (2016a) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764CrossRefGoogle Scholar
  178. Nagalakshmaiah M, Mortha G, Dufresne A (2016b) Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr Polym 136:945–954CrossRefGoogle Scholar
  179. National Nanotechnology Initiative: Environmental, Health, and Safety Research Strategy, National Science and Technology Council Committee on Technology (2011)Google Scholar
  180. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRefGoogle Scholar
  181. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25CrossRefGoogle Scholar
  182. Nepomuceno NC, Santos AS, Oliveira JE, Glenn GM, Medeiros ES (2017) Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines. Cellulose 24:119–129CrossRefGoogle Scholar
  183. Nge TT, Lee S-H, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852CrossRefGoogle Scholar
  184. Ni J, Teng N, Chen H, Wang J, Zhu J, Na H (2015) Hydrolysis behavior of regenerated celluloses with different degree of polymerization under microwave radiation. Bioresour Technol 191:229–233CrossRefGoogle Scholar
  185. Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931CrossRefGoogle Scholar
  186. Nishimura H, Sarko A (1987a) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866CrossRefGoogle Scholar
  187. Nishimura H, Sarko A (1987b) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874CrossRefGoogle Scholar
  188. Nourbakhsh S (2015) Comparison between laser application and atmospheric air plasma treatment on nanocellulose coating of polyester and nylon 66 fabrics. J Laser Appl 27:012005CrossRefGoogle Scholar
  189. Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182CrossRefGoogle Scholar
  190. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRefGoogle Scholar
  191. Olea EH, Carrillo EP, Chiw MM, Saldívar SOS (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int 2015:1–10CrossRefGoogle Scholar
  192. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  193. Panaitescu DM, Frone AN, Nicolae C (2013) Micro-and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polym J 49:3857–3866CrossRefGoogle Scholar
  194. Parida D, Jassal M, Agarwal AK (2012) Functionalization of cotton by in situ reaction of styrene in atmospheric pressure plasma zone. Plasma Chem Plasma Process 32:1259–1274CrossRefGoogle Scholar
  195. Pasquini D, de Morais Teixeira E, da Silva Curvelo AA, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68:193–201CrossRefGoogle Scholar
  196. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)-crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRefGoogle Scholar
  197. Pelissari FM, do Amaral Sobral PJ, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRefGoogle Scholar
  198. Piccinno F, Hischier R, Seeger S, Som C (2015) Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste. ACS Sustain Chem Eng 3:1047–1055CrossRefGoogle Scholar
  199. Piccinno F, Hischier R, Seeger S, Som C (2018) Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J Clean Prod 174:283–295CrossRefGoogle Scholar
  200. Ping L, You-Lo H (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRefGoogle Scholar
  201. Pires PAR, Malek NI, Teixeira TC, Bioni TA, Nawaz H, El Seoud OA (2015) Imidazole-catalyzed esterification of cellulose in ionic liquid/molecular solvents: a multi-technique approach to probe effects of the medium. Ind Crop Prod 77:180–189CrossRefGoogle Scholar
  202. Qi H, Sui X, Yuan J, Wei Y, Zhang L (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700CrossRefGoogle Scholar
  203. Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230CrossRefGoogle Scholar
  204. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRefGoogle Scholar
  205. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibres: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92CrossRefGoogle Scholar
  206. Rouette H-K (2001) Encyclopedia of textile finishing. Springer, BerlinCrossRefGoogle Scholar
  207. Rowland SP, Howley PS (1988) Hydrogen bonding on accessible surfaces of cellulose from various sources and relationship to order within crystalline regions. J Polym Sci Polym Chem 26:1769–1778CrossRefGoogle Scholar
  208. Rowland SP, Roberts EJ (1972) The nature of accessible surfaces in the microstructure of cotton cellulose. J Polym Sci Polym Chem 10:2447–2461CrossRefGoogle Scholar
  209. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  210. Saini S, Belgacem N, Mendes J, Elegir G, Bras J (2015) Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl Mater Interfaces 7:18076–18085CrossRefGoogle Scholar
  211. Saini S, Belgacem MN, Salon M-CB, Bras J (2016) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23:795–810CrossRefGoogle Scholar
  212. Savadekar N, Mhaske S (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151CrossRefGoogle Scholar
  213. Senturk-Ozer S, Gevgilili H, Kalyon DM (2011) Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing. Bioresour Technol 102:9068–9075CrossRefGoogle Scholar
  214. Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751CrossRefGoogle Scholar
  215. Shatkin JA, Kim B (2015) Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environ Sci Nano 2:477–499CrossRefGoogle Scholar
  216. Shatkin JA, Kim B (2017) Environmental Health and safety of cellulose nanomaterials and composites. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley, Germany, pp 683–729CrossRefGoogle Scholar
  217. Shi J, Shi SQ, Barnes HM, Pittman JCU (2011) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 6:879–890Google Scholar
  218. Shi J, Lu L, Guo W, Sun Y, Cao Y (2013) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658CrossRefGoogle Scholar
  219. Shin HK, Jeun JP, Kim HB, Kang PH (2012) Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem 81:936–940CrossRefGoogle Scholar
  220. Simon I, Glasser L, Scheraga HA, Manley RJ (1988) Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21:990–998CrossRefGoogle Scholar
  221. Singh A, Lou HH, Pike RW, Agboola A, Li X, Hopper JR, Yaws CL (2008) Environmental impact assessment for potential continuous processes for the production of carbon nanotubes. Am J Environ Sci 4:522–534CrossRefGoogle Scholar
  222. Siqueira G, Bras J, Dufresne A (2009) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRefGoogle Scholar
  223. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  224. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  225. Sonia A, Dasan KP, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Chem Eng J 228:1214–1222CrossRefGoogle Scholar
  226. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRefGoogle Scholar
  227. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  228. Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRefGoogle Scholar
  229. Sundari MT, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydr Polym 87:1701–1705CrossRefGoogle Scholar
  230. Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210CrossRefGoogle Scholar
  231. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRefGoogle Scholar
  232. Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366CrossRefGoogle Scholar
  233. Tee T-T, Sin LT, Gobinath R, Bee S-T, Hui D, Rahmat A, Fang Q (2013) Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol–starch blends prepared via solution cast approach. Compos Part B Eng 47:238–247CrossRefGoogle Scholar
  234. Tehrani AD, Neysi E (2013) Surface modification of cellulose nanowhisker throughout graft polymerization of 2-ethyl-2-oxazoline. Carbohydr Polym 97:98–104CrossRefGoogle Scholar
  235. Teng N, Ni J, Chen H, Ren Q, Na H, Liu X, Zhang R, Zhu J (2016) Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation. ACS Sustain Chem Eng 4:1507–1511CrossRefGoogle Scholar
  236. Teodoro KB, Teixeira EdM, Corrêa AC, Campos AD, Marconcini JM, Mattoso LH (2011) Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: efeito do tempo e da temperatura de extração. Polímeros 21:280–285CrossRefGoogle Scholar
  237. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefGoogle Scholar
  238. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318CrossRefGoogle Scholar
  239. Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRefGoogle Scholar
  240. Trache D, Hazwan Hussin M, Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRefGoogle Scholar
  241. Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, Szabo P (2016) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci 133.  https://doi.org/10.1002/app.43257
  242. Turbak AF, Snyder FW, Sandberg KR (1985) Suspensions containing microfibrillated cellulose. U.S. Patent 4378381AGoogle Scholar
  243. Walker WC, Bosso CJ, Eckelman M, Isaacs JA, Pourzahedi L (2015) Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date. J Nanopart Res 17:344–360CrossRefGoogle Scholar
  244. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527CrossRefGoogle Scholar
  245. Wang HD, Roeder RD, Whitney RA, Champagne P, Cunningham MF (2015) Graft modification of crystalline nanocellulose by Cu(0)-mediated SET living radical polymerization. J Polym Sci Polym Chem 53:2800–2808CrossRefGoogle Scholar
  246. Wang J, Siqueira G, Müller G, Rentsch D, Huch A, Tingaut P, Levalois-Grützmacher J, Grützmacher H (2016) Synthesis of new bis(acyl) phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals. Chem Commun 52:2823–2826CrossRefGoogle Scholar
  247. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316CrossRefGoogle Scholar
  248. Yahya M, Lee HV, Abd Hamid SB (2015) Preparation of nanocellulose via transition metal salt catalyzed hydrolysis pathway. BioResources 10:7627–7639CrossRefGoogle Scholar
  249. Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691–1698CrossRefGoogle Scholar
  250. Yang J, Ye DY (2012) Liquid crystal of nanocellulose whiskers’ grafted with acrylamide. Chin Chem Lett 23:367–370CrossRefGoogle Scholar
  251. Yi J, He T, Jiang Z, Li J, Hu C (2013) AlCl3 catalyzed conversion of hemicellulose in corn stover. Chin J Catal 34:2146–2152CrossRefGoogle Scholar
  252. Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212CrossRefGoogle Scholar
  253. Yu H-Y, Qin Z-Y, Liu Y-N, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978CrossRefGoogle Scholar
  254. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944CrossRefGoogle Scholar
  255. Yu J, Wang C, Wang J, Chu F (2016) In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Carbohydr Polym 141:143–150CrossRefGoogle Scholar
  256. Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1189CrossRefGoogle Scholar
  257. Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 92:2299–2305CrossRefGoogle Scholar
  258. Zepič V, Poljanšek I, Oven P, Škapin AS, Hančič A (2015) Effect of drying pretreatment on the acetylation of nanofibrillated cellulose. BioResources 10:8148–8167Google Scholar
  259. Zhang C, Su X, Xiong X, Hu Q, Amartey S, Tan X, Qin W (2016) 60Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw. Biomass Bioenergy 85:207–214CrossRefGoogle Scholar
  260. Zhao M, Li H, Liu W, Guo Y, Chu W (2016) Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens Bioelectron 79:581–588CrossRefGoogle Scholar
  261. Zlotorzynski A (1995) The application of microwave radiation to analytical and environmental chemistry. Crit Rev Anal Chem 25:43–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Molecular and Macromolecular Studies, Polish Academy of SciencesLodzPoland
  2. 2.Faculty of Science and Technology, School of Chemical Sciences and Food Technology, Polymer Research Center (PORCE)Universiti Kebangsaan Malaysia (UKM)BangiMalaysia
  3. 3.Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  4. 4.Institute of ChemistryUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  5. 5.Department of Polymer Science and EngineeringMahatma Gandhi UniversityKottayamIndia
  6. 6.University Grenoble Alpes, LGP2GrenobleFrance
  7. 7.CNRS, LGP2GrenobleFrance
  8. 8.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina
  9. 9.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations