Skip to main content
Log in

Cellulase immobilized on mesoporous biochar synthesized by ionothermal carbonization of cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose-based biochar was prepared via ionothermal carbonization of cellulose in [Bmim]Cl with H2SO4and subsequent pyrolysis. The biochar was analyzed by a series of characterization methods, indicating that it was a kind of mesoporous carbon suitable for the adsorption of cellulase. Kinetic analysis showed that the immobilized cellulase exhibited higher affinity to carboxymethyl cellulose than free cellulase. The immobilized cellulase, at different pH and temperatures, was more stable than free cellulase. It was used to hydrolyze pretreated cellulose in [Bmim]Cl with a total reducing sugar (TRS) yield of 99.9%. The immobilized cellulase maintained activity of 74.8% after five cycles at an immobilized cellulase/cellulose weight ratio of 30:1. When the cellulose loading was increased by a factor of 5, the TRS yield decreased by only 27.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barrer R (1989) Clay minerals as selective and shape-selective sorbents. Pure Appl Chem 61:1903–1912

    Article  CAS  Google Scholar 

  • Chandra S, Chowdhury J, Ghosh M, Talapatra G (2011) Adsorption of 3-thiophene carboxylic acid on silver nanocolloids: FTIR, Raman, and SERS study aided by density functional theory. J Phys Chem C 115:14309–14324

    Article  CAS  Google Scholar 

  • Chen X, Dong S (2003) Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor. Biosens Bioelectron 18:999–1004

    Article  CAS  Google Scholar 

  • Daoud FBO, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf. B 75:93–99

    Article  CAS  Google Scholar 

  • Dutta S, Wu KCW (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626

    Article  CAS  Google Scholar 

  • Elzobair KA, Stromberger ME, Ippolito JA, Lentz RD (2016) Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142:145–152

    Article  CAS  Google Scholar 

  • English BP, Wei M, Van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou S, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2:87

    Article  CAS  Google Scholar 

  • Fang Z (2015) How can we best solubilize lignocellulosic biomass for hydrolysis? Biofuel Bioprod Biorefin 9:621–622

    Article  CAS  Google Scholar 

  • Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  • Heredia A, Fernández-Bolaños J, Guillén R (1990) Cellulase inhibition by polyphenols in olive fruits. Food Chem 38:69–73

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Jabasingh SA, Nachiyar CV (2012) Immobilization of Aspergillus nidulans SU04 cellulase on modified activated carbon. J Therm Anal Calorim 109:193–202

    Article  Google Scholar 

  • Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414

    Article  CAS  Google Scholar 

  • Kumakura M (1997) Preparation of immobilized cellulase beads and their application to hydrolysis of cellulosic materials. Process Biochem 32:555–559

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  • Lee JS, Mayes RT, Luo H, Dai S (2010) Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48:3364–3368

    Article  CAS  Google Scholar 

  • Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [Bmim] Cl. Chin Sci Bull 51:2432–2436

    Article  CAS  Google Scholar 

  • Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  Google Scholar 

  • Liu G, Xu Q, Dong X, Yang J, Pile LS, Geoff Wang G, Wang F (2016) Effect of protective gas and pyrolysis temperature on the biochar produced from three plants of Gramineae: physical and chemical characterization. Waste Biomass Valoriz. 7:1469–1480

    Article  CAS  Google Scholar 

  • Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z (2014) A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J Mol Catal B Enzym 109:53–61

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morris RE (2009) Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chem Commun 21:2990–2998

    Article  Google Scholar 

  • Mubarak NM, Kundu A, Sahu JN, Abdullah EC, Jayakumar NS (2014a) Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61:265–275

    Article  CAS  Google Scholar 

  • Mubarak NM, Wong JR, Tan KW, Sahu JN, Abdullah E, Jayakumar N, Ganesan P (2014b) Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J Mol Catal B Enzym 107:124–131

    Article  CAS  Google Scholar 

  • Murmanis L, Highley TL, Palmer J (1987) Cytochemical localization of cellulases in decayed and nondecayed wood. Wood Sci Technol 21:101–109

    Article  CAS  Google Scholar 

  • Rui MFB, Dias AA (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotech 112:173–184

    Article  Google Scholar 

  • Sankarraj N, Nallathambi G (2015) Immobilization and characterization of cellulase on concanavalin A (Con A)-layered calcium alginate beads. Biocatal Biotransform 33:81–88

    Article  CAS  Google Scholar 

  • Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, Technical Report, NREL/TP-510-42618, 1617, 1-16, National Renewable Energy Laboratory (NREL), Colorado

  • Smith PK, Krohn RI, Hermanson G, Mallia A, Gartner F, Provenzano M, Fujimoto E, Goeke N, Olson B, Klenk D (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Edit 43:597–601

    Article  Google Scholar 

  • Sun N, Rodríguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  • Sun Z, Tao M, Zhao Q, Guang H, Shi T, Wang X (2015) A highly active willow-derived sulfonated carbon material with macroporous structure for production of glucose. Cellulose 22:675–682

    Article  CAS  Google Scholar 

  • Thangalazhy-Gopakumar S, Al-Nadheri WMA, Jegarajan D, Sahu J, Mubarak N, Nizamuddin S (2015) Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technol 178:65–69

    Article  CAS  Google Scholar 

  • Thines KR, Abdullah EC, Mubarak NM (2017) Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass. Micropor Mesopor Mater 253:29–39

    Article  CAS  Google Scholar 

  • Tian XF, Fang Z, Jiang D, Sun XY (2011) Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnol Biofuels 4:53. https://doi.org/10.1186/1754-6834-4-53)

    Article  CAS  Google Scholar 

  • Tian XF, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuel Bioprod Biorefin 6:335–350

    Article  Google Scholar 

  • Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156

    Article  CAS  Google Scholar 

  • Van de Velden M, Baeyens J, Boukis I (2008) Modeling CFB biomass pyrolysis reactors. Biomass Bioenergy 32:128–139

    Article  Google Scholar 

  • Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp, Norcross, pp 30093–32901

    Google Scholar 

  • Weimer PJ, Weston WM (1985) Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnol Bioeng 27:1540–1547

    Article  CAS  Google Scholar 

  • Xie ZL, White RJ, Weber J, Taubert A, Titirici MM (2011) Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. J Mater Chem 21:7434–7442

    Article  CAS  Google Scholar 

  • Xu H, Pan W, Wang R, Zhang D, Liu C (2012) Understanding the mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride ionic liquid via quantum chemistry calculations and molecular dynamics simulations. J Comput Aided Mol Des 26:329–337

    Article  CAS  Google Scholar 

  • Zhang D, Zhang K, Yao YL, Xia XH, Chen HY (2004) Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly (toluidine blue) films and its application in glucose biosensor construction. Langmuir 20:7303–7307

    Article  CAS  Google Scholar 

  • Zhang P, Gong Y, Wei Z, Wang J, Zhang Z, Li H, Dai S, Wang Y (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mater Interface 6:12515–12522

    Article  CAS  Google Scholar 

  • Zhao XS, Bao XY, Guo W, Fang YL (2006) Immobilizing catalysts on porous materials. Mater Today 9:32–39

    Article  CAS  Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia SQ, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  CAS  Google Scholar 

  • Zhu CH, Guo F, Guo XQ, Li XK (2016) In situ saccharification of cellulose using a cellulase mixture and supplemental β-glucosidase in aqueous-ionic liquid media. BioResources 11:9068–9078

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from Nanjing Agricultural University (68Q-0603) and the National Science Foundation of China (51536009 and 51576199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Ch., Fang, Z., Su, Tc. et al. Cellulase immobilized on mesoporous biochar synthesized by ionothermal carbonization of cellulose. Cellulose 25, 2473–2485 (2018). https://doi.org/10.1007/s10570-018-1704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1704-8

Keywords

Navigation