Advertisement

Cellulose

, Volume 25, Issue 4, pp 2355–2366 | Cite as

A new method for in situ synthesis of Ag–TiO2 nanocomposite particles on polyester/cellulose fabric by photoreduction and self-cleaning properties

  • Zahra Moridi Mahdieh
  • Shahla Shekarriz
  • Faramarz Afshar Taromi
  • Majid Montazer
Original Paper

Abstract

An efficient strategy was designed to make Ag–TiO2 nanoparticles on textile fabric by a facile single-step in situ method without adding any chemical agents. The photoreduction method was used to the synthesis of nanoparticles. The polyester/cellulose fabric was immersed in a suspension containing TiO2 nanoparticles/AgNO3 and then squeezed. The padded fabric was exposed directly to ultra violet (UV) light irradiation. Diffuse reflectance spectra confirmed the creation of plasmon peak for synthesized Ag–TiO2 at 460 nm and the more absorbance from the UV to the visible region. The elemental analysis shows the formation of the metallic silver on TiO2 nanoparticles surface by the in situ synthesis method, as evidenced by X-ray diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The morphological properties and nanoparticles distribution on the fabric showed Ag–TiO2 nanoparticles coating with even distribution and the average particle size of 27 ± 5 nm that was confirmed by field emission-scanning electron microscope images and map analysis. The Ag–TiO2 treated fabric presented remarkable photocatalytic activities through discoloration of methylene blue stain under sunlight, UVA (400–320 nm), and UVC (290–100 nm) irradiation.

Keywords

Ag–TiO2 nano particles In-situ synthesis Photoreduction Polyester/cellulose fabric Self-cleaning properties 

Supplementary material

10570_2018_1694_MOESM1_ESM.doc (498 kb)
Supplementary material 1 (DOC 498 kb)

References

  1. Abid M, Bouattour S, Ferraria AM et al (2017) Facile functionalization of cotton with nanostructured silver/titania for visible-light plasmonic photocatalysis. J Colloid Interface Sci 507:83–94.  https://doi.org/10.1016/j.jcis.2017.07.109 CrossRefGoogle Scholar
  2. Albiter E, Valenzuela MA, Alfaro S, Valverde-Aguilar G, Martínez-Pallares FM (2015) Photocatalytic deposition of Ag nanoparticles on TiO2: metal precursor effect on the structural and photoactivity properties. J Saudi Chem Soc 19:563–573.  https://doi.org/10.1016/j.jscs.2015.05.009 CrossRefGoogle Scholar
  3. Allahyarzadeh V, Montazer M, Nejad NH, Samadi N (2013) In situ synthesis of nano silver on polyester using NaOH/nano TiO2. J Appl Polym Sci 129:892–900.  https://doi.org/10.1002/app.38907 CrossRefGoogle Scholar
  4. Cacciato G, Bayle M, Pugliara A et al (2015) Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference. Nanoscale 7:13468–13476.  https://doi.org/10.1039/C5NR02406D CrossRefGoogle Scholar
  5. Chauhan I, Mohanty P (2015) In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities. Cellulose 22:507–519.  https://doi.org/10.1007/s10570-014-0480-3 CrossRefGoogle Scholar
  6. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255.  https://doi.org/10.1007/s12274-010-1027-z CrossRefGoogle Scholar
  7. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679.  https://doi.org/10.1021/j100102a038 CrossRefGoogle Scholar
  8. Courrol LC, de Oliveira Silva FR, Gomes L (2007) A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A Physicochem Eng Asp 305:54–57.  https://doi.org/10.1016/j.colsurfa.2007.04.052 CrossRefGoogle Scholar
  9. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599.  https://doi.org/10.1021/ie303468t CrossRefGoogle Scholar
  10. Dehnavi AS, Raisi A, Aroujalian A (2013) Control size and stability of colloidal silver nanoparticles with antibacterial activity prepared by a green synthesis method. Synth React Inorg Met Org Nano Met Chem 43:543–551.  https://doi.org/10.1080/15533174.2012.741182 CrossRefGoogle Scholar
  11. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  12. Gao S et al (2017) Facile construction of robust fluorine-free superhydrophobic TiO2@ fabrics with excellent anti-fouling, water-oil separation and UV-protective properties. Mater Des 128:1–8.  https://doi.org/10.1016/j.matdes.2017.04.091 CrossRefGoogle Scholar
  13. Gorjanc M, Šala M (2016) Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes. Cellulose 23:2199–2209.  https://doi.org/10.1007/s10570-016-0945-7 CrossRefGoogle Scholar
  14. Goyal G, Hwang J, Aviral J, Seo Y, Jo Y, Son J, Choi J (2017) Green synthesis of silver nanoparticles using β-glucan, and their incorporation into doxorubicin-loaded water-in-oil nanoemulsions for antitumor and antibacterial applications. J Ind Eng Chem 47:179–186.  https://doi.org/10.1016/j.jiec.2016.11.029 CrossRefGoogle Scholar
  15. He J, Ichinose I, Kunitake T, Nakao A (2002) In situ synthesis of noble metal nanoparticles in ultrathin TiO2–gel films by a combination of ion-exchange and reduction processes. Langmuir 18:10005–10010.  https://doi.org/10.1021/la0260584 CrossRefGoogle Scholar
  16. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV–irradiation. J Am Chem Soc 127:3928–3934.  https://doi.org/10.1021/ja042925a CrossRefGoogle Scholar
  17. Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899.  https://doi.org/10.1021/ja904810h CrossRefGoogle Scholar
  18. Huang J et al (2015) Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832.  https://doi.org/10.1039/c4ta05332j CrossRefGoogle Scholar
  19. Huang Y, Ho SS, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21:1–20.  https://doi.org/10.3390/molecules21010056 Google Scholar
  20. Jiang G, Lin Z, Chen Ch et al (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701.  https://doi.org/10.1016/j.carbon.2011.02.059 CrossRefGoogle Scholar
  21. Jung JH, Cheol OhH, Soo Noh H, Ji JH, Soo Kim S (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670.  https://doi.org/10.1016/j.jaerosci.2006.09.002 CrossRefGoogle Scholar
  22. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B 68:55–60.  https://doi.org/10.1016/j.colsurfb.2008.09.021 CrossRefGoogle Scholar
  23. Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5:4427–4435.  https://doi.org/10.1039/C3NR00613A CrossRefGoogle Scholar
  24. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241.  https://doi.org/10.1021/jp204364a CrossRefGoogle Scholar
  25. Li H, Zhao G, Chen Z, Song B, Han G (2010) TiO2–Ag nanocomposites by low-temperature sol–gel processing. J Am Ceram Soc 93:445–449.  https://doi.org/10.1111/j.1551-2916.2009.03441.x CrossRefGoogle Scholar
  26. Li S, Huang J, Chen Z, Chen G, Lai Y (2017a) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55.  https://doi.org/10.1039/c6ta07984a CrossRefGoogle Scholar
  27. Li S, Zhu T, Huang J, Guo Q, Chen G, Lai Y (2017b) Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application. Int J Nanomed 12:2593–2606.  https://doi.org/10.2147/ijn.s132035 CrossRefGoogle Scholar
  28. Messaoud M, Chadeau E, Brunon C et al (2010) Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics. J Photochem Photobiol A 215:147–156.  https://doi.org/10.1016/j.jphotochem.2010.08.003 CrossRefGoogle Scholar
  29. Milosevic M, Radoicic M, Saponjic Z et al (2014) In situ photoreduction of Ag+-ions by TiO2 nanoparticles deposited on cotton and cotton/PET fabrics. Cellulose 21:3781–3795.  https://doi.org/10.1007/s10570-014-0373-5 CrossRefGoogle Scholar
  30. Milošević M, Radoičić M, Šaponjić Z, Nunney T, Marković D, Nedeljković J, Radetić M (2013) In situ generation of Ag nanoparticles on polyester fabrics by photoreduction using TiO2 nanoparticles. J Mater Sci 48:5447–5455.  https://doi.org/10.1007/s10853-013-7338-1 CrossRefGoogle Scholar
  31. Montazer M, Behzadnia A, Pakdel E, Rahimi MK, Moghadam MB (2011) Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B 103:207–214.  https://doi.org/10.1016/j.jphotobiol.2011.03.009 CrossRefGoogle Scholar
  32. Montazer M, Behzadnia A, Moghadam MB (2012a) Superior self-cleaning features on wool fabric using TiO2/Ag nanocomposite optimized by response surface methodology. J Appl Polym Sci 125:E356–E363.  https://doi.org/10.1002/app.36768 CrossRefGoogle Scholar
  33. Montazer M, Behzadnia A, Moghadam MB (2012b) Superior self-cleaning features on wool fabric using TiO2/Ag nanocomposite optimized by response surface methodology. J Appl Polym Sci 125:356–363.  https://doi.org/10.1002/app.36768 CrossRefGoogle Scholar
  34. Rodríguez-González V, Alfaro SO, Torres-Martínez L, Cho S-H, Lee S-W (2010) Silver–TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B 98:229–234.  https://doi.org/10.1016/j.apcatb.2010.06.001 CrossRefGoogle Scholar
  35. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10:33–56.  https://doi.org/10.1016/j.jphotochemrev.2008.11.002 CrossRefGoogle Scholar
  36. Santos LMd, Carone CLP, Einloft SMO, Ligabue RA (2016) Preparation and properties of aromatic polyester/TiO2 nanocomposites from polyethylene terephthalate. Mater Res 19:158–166.  https://doi.org/10.1590/1980-5373-MR-2015-0203 CrossRefGoogle Scholar
  37. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986.  https://doi.org/10.1021/cr5001892 CrossRefGoogle Scholar
  38. Tran QH, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001–033020.  https://doi.org/10.1088/2043-6262/4/3/033001 CrossRefGoogle Scholar
  39. Wang H, Li Z, Liu Y, Zhang X, Zhang S (2009) Degradation of poly (ethylene terephthalate) using ionic liquids. Green Chem 11:1568–1575.  https://doi.org/10.1039/B906831G CrossRefGoogle Scholar
  40. Wang RM, Wang BY, He YF, Lv WH, Wang JF (2010) Preparation of composited Nano-TiO2 and its application on antimicrobial and self-cleaning coatings. Polym Adv Technol 21:331–336.  https://doi.org/10.1002/pat.1432 CrossRefGoogle Scholar
  41. Ye W, Xin JH, Li P, Lee K-LD, Kwong T-L (2006) Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. J Appl Polym Sci 102:1787–1793.  https://doi.org/10.1002/app.24463 CrossRefGoogle Scholar
  42. Yu D-H, Yu X, Wang C, Liu X-C, Xing Y (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl Mater Interfaces 4:2781–2787.  https://doi.org/10.1021/am3004363 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zahra Moridi Mahdieh
    • 1
    • 2
  • Shahla Shekarriz
    • 2
  • Faramarz Afshar Taromi
    • 1
  • Majid Montazer
    • 3
  1. 1.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran
  2. 2.Color and Polymer Research CenterAmirkabir University of TechnologyTehranIran
  3. 3.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations