Cellulose

pp 1–19 | Cite as

The investigation of rheological and strength properties of NFC hydrogels and aerogels from hardwood pulp by short catalytic bleaching (Hcat)

  • Ghazaleh Afsahi
  • Katarina Dimic-Misic
  • Patrick Gane
  • Tatiana Budtova
  • Thaddeus Maloney
  • Tapani Vuorinen
Original Paper
  • 31 Downloads

Abstract

Alkaline washed nanofibrillated cellulose (NFC) was obtained via TEMPO-mediation of hardwood pulp which had been short catalytically bleached (Hcat) under a controlled range of conditions. With careful combination of bleaching conditions, together with the subsequent alkali pre-treatment prior to TEMPO oxidation, it is possible to reduce xylan content of Hcat hardwood birch pulps as compared to traditional elemental chlorine free (ECF) bleaching. The defined amount of xylan is seen to affect the static water-holding and agglomeration state of the respective NFC. It is shown that colloidal interactions between the nanofibrils are dependent on the amount of water present in the NFC hydrogels as water retained within xylan induced swelling of the fibrils that resulted in a weaker aerogel structure.

Keywords

Nanocellulose Hcat bleaching Aerogel Rheology Xylan content Water sorption Mechanical properties of aerogels 

Notes

Acknowledgments

The authors thank Mr. Antton Lahnalammi for preparing some parts of bleached pulp and performing TEMPO-mediated oxidation of birch pulp samples and Christophe Pradille (Mat Xper, France) for the help in the uniaxial compression tests.

Supplementary material

10570_2018_1678_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Afsahi G, Chenna NK, Vuorinen T (2015) Intensified and short catalytic bleaching of eucalyptus kraft pulp. Ind Eng Chem Res 54:8417–8421.  https://doi.org/10.1021/acs.iecr.5b01725 CrossRefGoogle Scholar
  2. Anelli PL, Biffi C, Montanari F, Quici S (1987) Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J Org Chem 52:2559–2562CrossRefGoogle Scholar
  3. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Cellulose.  https://doi.org/10.1021/la001070m Google Scholar
  4. Bragd PL, Besemer AC, Van Bekkum H (2000) Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-D-glucopyranoside. Carbohydr Res 328:355–363.  https://doi.org/10.1016/S0008-6215(00)00109-9 CrossRefGoogle Scholar
  5. Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595.  https://doi.org/10.1007/s10570-016-0960-8 CrossRefGoogle Scholar
  6. Bulota M, Vesterinen A-H, Hughes M, Seppälä J (2008) Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym Compos 16:101–113.  https://doi.org/10.1002/pc.22390 Google Scholar
  7. Busse-Wicher M, Li A, Silveira RL et al (2016) Evolution of xylan substitution patterns in gymnosperms and angiosperms: implications for xylan interaction with cellulose. Plant Physiol.  https://doi.org/10.1104/pp.16.00539 Google Scholar
  8. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410.  https://doi.org/10.1007/s10570-011-9629-5 CrossRefGoogle Scholar
  9. Chen W, Li Q, Wang Y et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161.  https://doi.org/10.1002/cssc.201300950 CrossRefGoogle Scholar
  10. Chenna NK, Jääskeläinen AS, Vuorinen T (2013) Rapid and selective catalytic oxidation of hexenuronic acid and lignin in cellulosic fibers. Ind Eng Chem Res 52:17744–17749.  https://doi.org/10.1021/ie4031924 CrossRefGoogle Scholar
  11. Deka A, Dey N (2013) Rheological studies of two component high build epoxy and polyurethane based high performance coatings. J Coat Technol Res 10:305–315.  https://doi.org/10.1007/s11998-012-9445-3 CrossRefGoogle Scholar
  12. Dimic-Misic K, Puisto A, Gane P et al (2013) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20:2847–2861.  https://doi.org/10.1007/s10570-013-0076-3 CrossRefGoogle Scholar
  13. Dimic-Misic K, Nieminen K, Gane P et al (2014) Deriving a process viscosity for complex particulate nanofibrillar cellulose gel-containing suspensions. Appl Rheol.  https://doi.org/10.3933/ApplRheol-24-35616 Google Scholar
  14. Dimic-Misic K, Gane P, Budtova T et al (2015) Influence of xylan on nanocellulose (NFC) suspension rheology and aerogel morphology. In: 6th international symposium on industrial engineeringGoogle Scholar
  15. Dimic-Misic K, Rantanen J, Maloney TC, Gane PAC (2016) Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate. J Appl Polym Sci 133:1–13.  https://doi.org/10.1002/app.43486 CrossRefGoogle Scholar
  16. Duchesne I, Hult E, Molin U et al (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111.  https://doi.org/10.1023/A:1016645809958 CrossRefGoogle Scholar
  17. Ferrer A, Quintana E, Filpponen I et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193.  https://doi.org/10.1007/s10570-012-9788-z CrossRefGoogle Scholar
  18. Gomes VJ, Guimarães ALS, Colodette JL et al (2015) Effect of eucalypt pulp pretreatment with hot acid hydrolysis on (aZe)DP and (aZe)(EP)P bleaching performance. J Wood Chem Technol 35:424–437.  https://doi.org/10.1080/02773813.2015.1025283 CrossRefGoogle Scholar
  19. Horvath AE, Lindström T (2007) The influence of colloidal interactions on fiber network strength. J Colloid Interface Sci 309:511–517.  https://doi.org/10.1016/j.jcis.2006.08.066 CrossRefGoogle Scholar
  20. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145.  https://doi.org/10.1007/s10924-010-0248-2 CrossRefGoogle Scholar
  21. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.  https://doi.org/10.1039/C0NR00583E CrossRefGoogle Scholar
  22. Jin H, Kettunen M, Laiho A et al (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934.  https://doi.org/10.1021/la103877r CrossRefGoogle Scholar
  23. Kettunen M, Silvennoinen RJ, Houbenov N et al (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517.  https://doi.org/10.1002/adfm.201001431 CrossRefGoogle Scholar
  24. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466.  https://doi.org/10.1002/anie.201001273 CrossRefGoogle Scholar
  25. Kumar Chenna N, Piovano P, Järnefelt C, Vuorinen T (2016) organochlorine formation in tertiary amine catalyzed pulp bleaching. J Wood Chem Technol 36:318–328.  https://doi.org/10.1080/02773813.2016.1148166 CrossRefGoogle Scholar
  26. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433.  https://doi.org/10.1007/s10570-007-9184-2 CrossRefGoogle Scholar
  27. Läuger J, Wollny K, Huck S (2002) Direct strain oscillation: a new oscillatory method enabling measurements at very small shear stresses and strains. Rheol Acta 41:356–361.  https://doi.org/10.1007/s00397-002-0231-5 CrossRefGoogle Scholar
  28. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671.  https://doi.org/10.1021/ma048396c CrossRefGoogle Scholar
  29. Naderi A, Lindström T, Pettersson T (2014) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21:2357–2368.  https://doi.org/10.1007/s10570-014-0329-9 CrossRefGoogle Scholar
  30. Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol (N Y N Y) 60:1151–1159.  https://doi.org/10.1122/1.4960336 CrossRefGoogle Scholar
  31. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439.  https://doi.org/10.1016/j.carbpol.2014.05.092 CrossRefGoogle Scholar
  32. Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63:529–535.  https://doi.org/10.1515/HF.2009.096 CrossRefGoogle Scholar
  33. Pääkkönen T, Dimic-Misic K, Orelma H et al (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293.  https://doi.org/10.1007/s10570-015-0824-7 CrossRefGoogle Scholar
  34. Patt R, Kordsachia O, Fehr J (2006) European hardwoods versus eucalyptus globulus as a raw material for pulping. Wood Sci Technol 40:39–48.  https://doi.org/10.1007/s00226-005-0042-9 CrossRefGoogle Scholar
  35. Pönni R, Pääkkönen T, Nuopponen M et al (2014) Alkali treatment of birch kraft pulp to enhance its TEMPO catalyzed oxidation with hypochlorite. Cellulose 21:2859–2869.  https://doi.org/10.1007/s10570-014-0278-3 CrossRefGoogle Scholar
  36. Saito T, Okita Y, Nge TT et al (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440.  https://doi.org/10.1016/j.carbpol.2006.01.034 CrossRefGoogle Scholar
  37. Saito T, Hirota M, Tamura N et al (2009) Individualization of nano-sized plant cellulose fibrils achieved by direct surface carboxylation using TEMPO catalyst. Biomacromolecules 10:1992–1996CrossRefGoogle Scholar
  38. Seantier B, Bendahou D, Bendahou A et al (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348.  https://doi.org/10.1016/j.carbpol.2015.11.032 CrossRefGoogle Scholar
  39. Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824.  https://doi.org/10.1039/b927505c CrossRefGoogle Scholar
  40. Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774.  https://doi.org/10.1016/j.carbpol.2010.10.043 CrossRefGoogle Scholar
  41. Sluiter J, Sluiter A (2010) Summative Mass Closure Laboratory Analytical Procedure (LAP) Review and IntegrationGoogle Scholar
  42. Sluiter JB, Ruiz RO, Scarlata CJ et al (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053.  https://doi.org/10.1021/jf1008023 CrossRefGoogle Scholar
  43. Wang M, Anoshkin IV, Nasibulin AG et al (2013) Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater 25:2428–2432.  https://doi.org/10.1002/adma.201300256 CrossRefGoogle Scholar
  44. Wollny K (2001) New rheological test method to determine the dewatering kinetics of suspensions. Appl Rheol 11:197–202Google Scholar
  45. Zu G, Shen J, Zou L et al (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon N Y 99:203–211.  https://doi.org/10.1016/j.carbon.2015.11.079 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ghazaleh Afsahi
    • 1
  • Katarina Dimic-Misic
    • 1
  • Patrick Gane
    • 1
  • Tatiana Budtova
    • 1
    • 2
  • Thaddeus Maloney
    • 1
  • Tapani Vuorinen
    • 1
  1. 1.Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityAalto, EspooFinland
  2. 2.Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, MINES ParisTechPSL - Research UniversitySophia AntipolisFrance

Personalised recommendations